
tkz-grapheur [fr]
Un système de grapheur,

basé sur TikZ et xint.
Version 0.30a – 13/02/2026

Cédric Pierquet
c pierquet – at – outlook . fr

https://github.com/cpierquet/latex-packages/tree/main/tkz-grapheur

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

L

M

D E

0,25 1,4 3,3π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π
0

√
2/2

1/2

√
3/2

1

−1
−
√
3/2

−1/2

−
√
2/2

À mon papa.

https://github.com/cpierquet/latex-packages/tree/main/tkz-grapheur

Table des matières

1 Introduction 4
1.1 Description et idées générales . 4
1.2 Fonctionnement global . 4
1.3 Packages utilisés, et options du package . 4
1.4 Chargement du package . 5
1.5 Avertissements . 5
1.6 Exemple introductif . 6

2 Styles de base et création de l’environnement 7
2.1 Styles de base . 7
2.2 Création de l’environnement . 8

2.2.1 Valeurs manuelles . 8
2.2.2 Avec choix des dimensions . 9

2.3 Grilles et axes . 11
2.3.1 Fonctionnement global . 11
2.3.2 Thème de couleurs de la grille . 14

2.4 Ajout de valeurs manuellement . 15
2.5 Nœuds liés à la fenêtre et aux axes . 16

3 Commandes spécifiques de définitions 17
3.1 Tracer une droite . 17
3.2 Définir une fonction, tracer la courbe d’une fonction 18
3.3 Définir/tracer une courbe d’interpolation (simple) . 19
3.4 Définir/tracer une courbe d’interpolation (Hermite) . 20
3.5 Définir/tracer une courbe d’interpolation (Lagrange) 21
3.6 Définir des points sous forme de nœuds . 24
3.7 Marquage de points . 26
3.8 Marquer des points de discontinuité . 27
3.9 Récupérer les coordonnées de nœuds . 28
3.10 Placer du texte . 28

4 Commandes spécifiques d’exploitation des courbes 30
4.1 Placement d’images . 30
4.2 Détermination d’antécédents . 31
4.3 Construction d’antécédents . 32
4.4 Intersections de deux courbes . 33
4.5 Extremums . 34
4.6 Intégrales (version améliorée) . 38
4.7 Tangentes . 42
4.8 Suites récurrentes et toiles . 44
4.9 Inégalité linéaire . 46

5 Commandes spécifiques des fonctions de densité 48
5.1 Loi normale . 48
5.2 Loi du khi deux . 49
5.3 Histogramme pour une loi binomiale . 49

6 Commandes spécifiques des méthodes intégrales 52
6.1 Méthodes géométriques . 52
6.2 Méthode de Monte-Carlo . 54

[tkz-grapheur] - 2 -

7 Commandes spécifiques des statistiques 56
7.1 Limitations . 56
7.2 Courbe des ECC/FCC (1 variable) . 56
7.3 Le nuage de points (2 variables) . 57
7.4 La droite de régression (2 variables) . 58
7.5 Autres régressions (2 variables) . 59

8 Codes source des exemples de la page d’accueil 62

9 Commandes auxiliaires 64
9.1 Intro . 64
9.2 Arrondi formaté . 64
9.3 Nombre aléatoire sous contraintes . 64

10 Liste des commandes 67

11 Quelques commandes liées à pgfplots 68
11.1 Introduction . 68
11.2 Macros spécifique pgfplots/axis . 68
11.3 Exemple illustré . 69

12 Historique 71

[tkz-grapheur] - 3 -

1 Introduction

1.1 Description et idées générales

Avec ce modeste package, loin des capacités offertes par exemple par les excellents packages pgfplots 1,
tkz-* 2 (d’Alain Matthes) ou tzplot 3 (de In-Sung Cho), il est possible de travailler sur des graphiques
de fonctions, en langage TikZ, de manière intuitive et explicite.
Concernant le fonctionnement global :

— des styles particuliers pour les objets utilisés ont été définis (modifiables localement) ;

— le nom des commandes est sous forme opérationnelle, de sorte que la construction des éléments
graphiques a une forme quasi algorithmique.

1.2 Fonctionnement global

Pour schématiser, il suffit :

— de déclarer les paramètres de la fenêtre graphique ;

— d’afficher grille/axes/graduations ;

— de déclarer les fonctions ou les courbes d’interpolation ;

— de déclarer éventuellement des points particuliers ;

— de placer un nuage de points.

Il sera ensuite possible :

— de tracer des courbes ;

— de déterminer graphiquement des images ou des antécédents ;

— de rajouter des éléments de dérivation (tangentes) ou d’intégration (domaine) ;

— de tracer une droite d’ajustement linéaire ou la courbe d’un autre ajustement ;

— . . .

1.3 Packages utilisés, et options du package

Le package utilise :

— tikz, avec les librairies calc,intersections,patterns,patterns.meta,bbox ;

— simplekv, xintexpr, xstring, listofitems ;

— pgfplots, avec la librairie fillbetween (désactivable via [nonpgfplots]) ;

— xint-regression 4 (pour les régressions, désactivable via [nonxintreg]).

Le package charge également siunitx avec les options classiques [fr], mais il est possible de ne pas
le charger en utilisant l’option [nonsiunitx].

1. CTAN : https://ctan.org/pkg/pgfplots
2. par exemple tkz-base https://ctan.org/pkg/tkz-base et tkz-fct https://ctan.org/pkg/tkz-fct.
3. CTAN : https://ctan.org/pkg/tzplot.
4. CTAN : https://ctan.org/pkg/xint-regression.

[tkz-grapheur] - 4 -

https://ctan.org/pkg/pgfplots
https://ctan.org/pkg/tkz-base
https://ctan.org/pkg/tkz-fct
https://ctan.org/pkg/tzplot
https://ctan.org/pkg/xint-regression

1.4 Chargement du package

Le package charge également la librairie TikZ babel, mais il est possible de ne pas la charger en
utilisant l’option [nontikzbabel].
Les différentes options sont bien évidemment cumulables.

%chargement par défaut
\usepackage{tkz-grapheur}

%chargement sans sinuitx, à charger manuellement
\usepackage[nonsiunitx]{tkz-grapheur}

%chargement sans tikz.babel
\usepackage[nontikzbabel]{tkz-grapheur}

%chargement sans pgfplots + options compat
\usepackage[nonpgfplots]{tkz-grapheur}
\pgfplotsset{compat=...}

À noter également que certaines commandes peuvent utiliser des packages comme nicefrac, qui sera
donc à charger le cas échéant.
Concernant la partie calculs et tracés, c’est le package xint qui s’en occupe.

1.5 Avertissements

Il est possible, dû aux calculs (multiples) effectués en interne, que le temps de compilation soir un peu
allongé.
La précision des résultats (de détermination) semble être aux environs de 10−4, ce qui devrait norma-
lement garantir des tracés et lectures satisfaisantes. Il est quand même conseillé d’être prudent quant
aux résultats obtenus et ceux attendus.

[tkz-grapheur] - 5 -

1.6 Exemple introductif

On peut par exemple partir de l’exemple suivant, pour illustrer le cheminement des commandes de ce
package. Les commandes et la syntaxe seront détaillées dans les sections suivantes !

\begin{GraphiqueTikz}%
[x=10cm,y=10cm,Xmin=0,Xmax=1.001,Xgrille=0.1,Xgrilles=0.02,
Ymin=0,Ymax=1.001,Ygrille=0.1,Ygrilles=0.02]
\TracerAxesGrilles[Elargir=2.5mm,Police=\small]%

{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}
{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}

\DefinirCourbe[Nom=cf,Debut=0,Fin=1]<f>{x*exp(x-1)}
\DefinirCourbe[Nom=delta,Debut=0,Fin=1]<D>{x}
\TracerIntegrale[Type=fct/fct]{f(x)}[D(x)]{0}{1}
\TracerCourbe[Couleur=red]{f(x)}
\TracerCourbe[Couleur=teal,StyleTrace=dashed]{D(x)}
\PlacerImages[Couleurs=blue/cyan,Traits]{f}{0.8,0.9}
\PlacerAntecedents[Couleurs=green!50!black/olive,Traits]{cf}{0.5}

\end{GraphiqueTikz}

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

[tkz-grapheur] - 6 -

2 Styles de base et création de l’environnement

2.1 Styles de base

Les styles utilisés pour les tracés sont donnés ci-dessous.
Dans une optique de simplicité, seule la couleur des éléments peut être paramétrée, mais si l’utilisateur
le souhaite, il peut redéfinir les styles proposés.

%paramètres déclarés et stockés (utilisables dans l'environnement a posteriori)
\tikzset{

Xmin/.store in=\pflxmin,Xmin/.default=-3,Xmin=-3,
Xmax/.store in=\pflxmax,Xmax/.default=3,Xmax=3,
Ymin/.store in=\pflymin,Ymin/.default=-3,Ymin=-3,
Ymax/.store in=\pflymax,Ymax/.default=3,Ymax=3,
Origx/.store in=\pflOx,Origx/.default=0,Origx=0,
Origy/.store in=\pflOy,Origy/.default=0,Origy=0,
Xgrille/.store in=\pflgrillex,Xgrille/.default=1,Xgrille=1,
Xgrillei/.store in=\pflgrillexi,Xgrillei/.default=1,Xgrillei=1,
Xgrilles/.store in=\pflgrillexs,Xgrilles/.default=0.5,Xgrilles=0.5,
Ygrille/.store in=\pflgrilley,Ygrille/.default=1,Ygrille=1,
Ygrillei/.store in=\pflgrilleyi,Ygrillei/.default=1,Ygrillei=1,
Ygrilles/.store in=\pflgrilleys,Ygrilles/.default=0.5,Ygrilles=0.5

}

On retrouve donc :

— l’origine du repère (Origx/Origy) ;

— les valeurs extrêmes des axes (Xmin/Xmax/Ymin/Ymax) ;

— les paramètres des grilles principales et secondaires (Xgrille/Xgrilles/Ygrille/Ygrilles).

À noter que, depuis la version 0.2.8, un troisième niveau de grille est accessible, via les valeurs
Xgrillei/Ygrillei.
Concernant les styles des objets, ils sont donnés ci-dessous.

%styles grilles/axes
\tikzset{pflgrillep/.style={thin,lightgray}}
\tikzset{pflgrilles/.style={very thin,lightgray}}
\tikzset{pflaxes/.style={line width=0.8pt,->,>=latex}}

%style des points (courbe / nuage /labels / montecarlo)
\tikzset{pflpoint/.style={line width=0.95pt}}
\tikzset{pflpointc/.style={radius=1.75pt}}
\tikzset{pflpointnuage/.style={radius=1.75pt}}
\tikzset{pflpointmc/.style={radius=0.875pt}}
\tikzset{pflnoeud/.style={}} %pour les inner sep par exemple :-)
\tikzset{pflcourbediscont/.style={line width=1.1pt}}

%style des courbes
\tikzset{pflcourbe/.style={line width=1.05pt}}

[tkz-grapheur] - 7 -

%style des traits (normaux, antécédents, images)
\tikzset{pfltrait/.style={line width=0.8pt}}
\tikzset{pfltraitantec/.style={line width=0.95pt,densely dashed}}
\tikzset{pfltraitimg/.style={line width=0.95pt,densely dashed,->,>=latex}}

%style des flèches
\tikzset{pflflecheg/.style={<-,>=latex}}
\tikzset{pflfleched/.style={->,>=latex}}
\tikzset{pflflechegd/.style={<->,>=latex}}

%style des constructions ECC (courbe / paramètres)
\tikzset{pfltraitsparamecc/.style={line width=0.9pt,densely dashed}}
\tikzset{pflcourbeecc/.style={line width=1.05pt}}

%style des constructions récurrence
\tikzset{pfltraitrec/.style={line width=0.8pt}}
\tikzset{pfltraitrecpointill/.style={pfltraitrec,densely dashed}}

L’idée est donc de pouvoir redéfinir globalement ou localement les styles, et éventuellement de rajouter
des éléments, en utilisant monstyle/.append style={...}.

2.2 Création de l’environnement

2.2.1 Valeurs manuelles

L’environnement proposé est basé sur TikZ, de sorte que toute commande classique liée à TikZ peut
être utilisée en marge des commandes du package !

\begin{GraphiqueTikz}[options tikz]<clés>
%code(s)

\end{GraphiqueTikz}

Les [options tikz] sont les options classiques qui peuvent être passées à un environnement TikZ,
ainsi que les clés des axes/grilles/fenêtre présentées précédemment.
Les <clés> spécifiques (et optionnelles) sont :

— TailleGrad : taille des graduations des axes (3pt pour 3pt dessus et 3pt dessous) ;

— Theme : thème couleurs de la grille ;

— AffCadre : booléen (false par défaut) pour afficher un cadre qui délimite la fenêtre graphique
(hors graduations éventuelles).

[tkz-grapheur] - 8 -

\begin{GraphiqueTikz}
[x=0.075cm,y=0.03cm,Xmin=0,Xmax=160,Xgrille=20,Xgrilles=10,
Origy=250,Ymin=250,Ymax=400,Ygrille=25,Ygrilles=5]
<AffCadre>

\end{GraphiqueTikz}

\begin{GraphiqueTikz}%
[x=0.9cm,y=0.425cm,Xmin=4,Xmax=20,Origx=4,
Ymin=40,Ymax=56,Ygrille=2,Ygrilles=1,Origy=40]
<AffCadre>

\end{GraphiqueTikz}

Ce sera bien évidemment plus parlant avec les éléments graphiques rajoutés !

2.2.2 Avec choix des dimensions

Il est également possible (c’est en test) de spécifier les dimensions du graphique, en laissant le code
déterminer les bonnes unités.
Dans ce cas, les clés et arguments diffèrent légèrement, notamment via la clé <Taille=larg/haut> :

[tkz-grapheur] - 9 -

%dimensions fixées (hors graduations)
\begin{GraphiqueTikz}%

[Xgrille=10,Xgrilles=5,Ygrille=50,Ygrilles=25]
%Xgrille(s) et/ou Ygrille(s) dans ce cas
<Xmin=0,Xmax=100,Ymin=0,Ymax=250,Taille={10cm/5cm}>

\TracerAxesGrilles[]{auto}{auto}
\end{GraphiqueTikz}

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

[tkz-grapheur] - 10 -

2.3 Grilles et axes

2.3.1 Fonctionnement global

La première commande utile va permettre de créer les grilles, les axes et les graduations.

%dans l'environnement GraphiqueTikz
\TracerAxesGrilles[clés]{gradX}{gradY}

Les [clés], optionnelles, disponibles sont :

— Grille : booléen (true par défaut) pour afficher les grilles (pour une grille unique, il suffit de
mettre les paramètres identiques pour Xgrille/Xgrilles ou Ygrille/Ygrilles) ;

— Elargir : rajout à la fin des axes (0 par défaut) ;
— Grads : booléen (true par défaut) pour les graduations ;
— Police : police globale des graduations vide par défaut ;
— Format : formatage particulier (voir en dessous) des valeurs des axes.

Concernant la clé Format, elle permet de spécifier un paramétrage spécifique pour les valeurs des axes.
Elle peut être donnée sous la forme fmt pour un formatage combiné, ou sous la forme fmtX/fmtY pour
différencier le formatage.
Les options possible sont :

— num : formater avec siunitx ;
— annee : formater en année ;
— frac : formater en fraction frac ;
— dfrac : formater en fraction dfrac ;
— nfrac : formater en fraction nicefrac ; (à charger !)
— trig : formater en trigo avec frac ;
— dtrig : formater en trigo avec dfrac ;
— ntrig : formater en trigo avec nfrac ;
— sqrt : formater en racine avec frac ;
— dsqrt : formater en racine avec dfrac ;
— nsqrt : formater en racine avec nicefrac.

\begin{GraphiqueTikz}
[x=0.075cm,y=0.03cm,Xmin=0,Xmax=160,Xgrille=20,Xgrilles=10,
Origy=250,Ymin=250,Ymax=400,Ygrille=25,Ygrilles=5]
\TracerAxesGrilles[Elargir=2.5mm,Police=\small]{0,10,...,160}{250,275,...,400}

\end{GraphiqueTikz}

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
250

275

300

325

350

375

400

[tkz-grapheur] - 11 -

\begin{GraphiqueTikz}%
[x=0.9cm,y=0.425cm,Xmin=4,Xmax=20,Origx=4,
Ymin=40,Ymax=56,Ygrille=2,Ygrilles=1,Origy=40]
\TracerAxesGrilles[Elargir=2.5mm,Police=\small]{4,5,...,20}{40,42,...,56}

\end{GraphiqueTikz}

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
40

42

44

46

48

50

52

54

56

À noter qu’il existe les clés booléennes [Derriere] (sans les graduations) et [Devant] (sans la grille)
pour afficher les axes en mode sous/sur -impression dans le cas d’intégrales par exemple.

\begin{GraphiqueTikz}%
[x=2.75cm,y=3cm,
Xmin=0,Xmax=3.5,Xgrille=pi/12,Xgrilles=pi/24,
Ymin=-1.05,Ymax=1.05,Ygrille=0.2,Ygrilles=0.05]
\TracerAxesGrilles[Elargir=2.5mm,Format=dtrig/nsqrt,Police=\footnotesize]%

{pi/6,pi/4,pi/3,pi/2,2*pi/3,3*pi/4,5*pi/6,pi}
{0,sqrt(2)/2,1/2,sqrt(3)/2,1,-1,-sqrt(3)/2,-1/2,-sqrt(2)/2}

\end{GraphiqueTikz}

π

6

π

4

π

3

π

2
2π

3

3π

4

5π

6

π
0

√
2/2

1/2

√
3/2
1

−1
−
√

3/2

−1/2

−
√

2/2

Dans le cas où le formatage ne donne pas de résultat(s) satisfaisant(s), il est possible d’utiliser une
commande générique de placement des graduations.

[tkz-grapheur] - 12 -

Dans le cas où les graduations sont naturellement définies par les données de la fenêtre et de la grille
(principale), il est possible de préciser auto dans les arguments obligatoires (dans ce cas le formatage
ne sera pas possible, et Format=num sera obligatoirement utilisé).

\begin{GraphiqueTikz}%
[x=1.5cm,y=6cm,Xmin=0,Xmax=7,Xgrille=0.5,Xgrilles=0.25,
Ymin=0,Ymax=1,Ygrille=0.1,Ygrilles=0.05]
\TracerAxesGrilles[Elargir=2.5mm,Dernier]{auto}{auto}

\end{GraphiqueTikz}

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7
0

0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

À noter qu’une clé (expérimentale), [Grille Intermediaire], permet d’afficher un troisième niveau de
grille, définie par [Xgrillei=...,Ygrillei=...].

\begin{GraphiqueTikz}%
[x=1.5cm,y=6cm,Xmin=0,Xmax=7,Xgrille=0.5,Xgrillei=0.25,Xgrilles=0.05,
Ymin=0,Ymax=1,Ygrille=0.1,Ygrillei=0.05,Ygrilles=0.01]
\TracerAxesGrilles[Elargir=2.5mm,Dernier,Grille Intermediaire]{auto}{auto}

\end{GraphiqueTikz}

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7
0

0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

[tkz-grapheur] - 13 -

2.3.2 Thème de couleurs de la grille

Il existe de plus 6 thèmes prédéfinis de couleurs pour les grilles, parmi :
<Theme=standard/gris/bleu/vert/chaud/contraste>.

\begin{GraphiqueTikz}[options]<Theme=...>
...

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3
Theme=standard

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Theme=gris

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3
Theme=bleu

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3
Theme=vert

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3
Theme=chaud

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3
Theme=contraste

[tkz-grapheur] - 14 -

2.4 Ajout de valeurs manuellement

Il est également possible d’utiliser une commande spécifique pour placer des valeurs sur les axes,
indépendamment d’un système automatisé de formatage.

%dans l'environnement GraphiqueTikz
\RajouterValeursAxeX[clés]{positions}{valeurs formatées}
\RajouterValeursAxeY[clés]{positions}{valeurs formatées}

Les [clés], optionnelles, disponibles sont :

— Police : police globale des graduations vide par défaut ;

— Traits : booléen pour ajouter les traits des graduations true par défaut.

Les arguments obligatoires correspondent aux abscisses (en langageTikZ) et aux labels (en langage
LATEX) des graduations.

\begin{GraphiqueTikz}%
[x=2.75cm,y=3cm,
Xmin=0,Xmax=3.5,Xgrille=pi/12,Xgrilles=pi/24,
Ymin=-1.05,Ymax=1.05,Ygrille=0.2,Ygrilles=0.05]
\TracerAxesGrilles[Grad=false,Elargir=2.5mm,]{}{}
\RajouterValeursAxeX

{0.15,0.6,pi/2,2.8284}
{\num{0.15},$\frac35$,$\displaystyle\frac{\pi}{2}$,$\sqrt{8}$}

\RajouterValeursAxeY
{-1,0.175,0.3,sqrt(3)/2}
{\num{-1},\num{0.175},$\nicefrac{3}{10}$,$\frac{\sqrt{3}}{2}$}

\end{GraphiqueTikz}

0,15 3
5

π

2

√
8

−1

0,175
3/10

√
3
2

[tkz-grapheur] - 15 -

2.5 Nœuds liés à la fenêtre et aux axes

En marge de la création de la fenêtre (et éventuellement des axes), des nœuds sont créés pour réutili-
sation ultérieure (placement de texte par exemple).

— 9 nœuds liés à la fenêtre :

— (graphe-nw), (graphe-n), (graphe-ne) ;
— (graphe-w), (graphe-c), (graphe-e) ;
— (graphe-sw), (graphe-s), (graphe-se) ;

— 4 nœuds liés aux axes :

— (axeox-w), (axeox-e) ;
— (axeoy-s), (axeoy-n) ;

— 1 nœud liés à l’origine :

— (axes-orig) ;

— 2 nœuds liés aux axes élargis (si nécessaire) :

— (axeox-ee) ;
— (axeoy-nn).

nw n ne

e

sessw

w c

w e

w

n

orig
ee

nn

[tkz-grapheur] - 16 -

3 Commandes spécifiques de définitions

3.1 Tracer une droite

L’idée est de proposer une commande pour tracer une droite, à partir :

— de deux points (ou nœuds) ;

— d’un point (ou nœud) et de la pente.

Il existe également une commande pour une asymptote verticale.

%dans l'environnement GraphiqueTikz
\TracerDroite[clés]{point ou nœud}{point ou noeud ou pente}
\TracerAsymptote[clés]{abscisse}

Les [clés], optionnelles, disponibles sont :

— Nom : nom éventuel du tracé (pour réutilisation) ;

— Pente : booléen pour préciser que la pente est utilisée (false par défaut) ;

— Debut : début du tracé (\pflxmin par défaut) ;

— Fin : fin du tracé (\pflxmax par défaut) ;

— StyleTrace : style du tracé (vide par défaut) ;

— Couleur : couleur du tracé (black par défaut).

\begin{GraphiqueTikz}%
[x=0.8cm,y=1cm,Xmin=-7,Xmax=4,Ymin=-3,Ymax=5]
\TracerAxesGrilles[Elargir=2.5mm]{auto}{auto}
\DefinirPts[Aff,Couleur=gray]{A/-4/3,B/2/0,C/0/-1}
\TracerDroite[Couleur=red]{(-2,-1)}{(2,4)}
\TracerDroite[Couleur=blue,Debut=-5,Fin=3]{(A)}{(B)}
\TracerDroite[Couleur=olive,Pente]{(C)}{0.25}
\TracerAsymptote[Couleur=brown]{-6}

\end{GraphiqueTikz}

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

5

[tkz-grapheur] - 17 -

3.2 Définir une fonction, tracer la courbe d’une fonction

L’idée est de définir une fonction, pour réutilisation ultérieure. Cette commande crée la fonction, sans
la tracer, car dans certains cas des éléments devront être tracés au préalable.
Il existe également une commande pour tracer la courbe d’une fonction précédemment définie.

%dans l'environnement GraphiqueTikz
\DefinirCourbe[clés]<nom fct>{formule xint}
\TracerCourbe[clés]{formule xint}

Les [clés] pour la définition ou le tracé, optionnelles, disponibles sont :

— Debut : borne inférieure de l’ensemble de définition (\pflxmin par défaut) ;

— Fin : borne inférieure de l’ensemble de définition (\pflxmax par défaut) ;

— Nom : nom de la courbe (important pour la suite !) ;

— Couleur : couleur du tracé (black par défaut) ;

— Pas : pas du tracé (il est déterminé automatiquement au départ mais peut être modifié) ;

— StyleTrace : style du tracé (vide par défaut) ;

— Trace : booléen pour tracer également la courbe (false par défaut).

\begin{GraphiqueTikz}%
[x=0.9cm,y=0.425cm,Xmin=4,Xmax=20,Origx=4,
Ymin=40,Ymax=56,Ygrille=2,Ygrilles=1,Origy=40]
\TracerAxesGrilles[Elargir=2.5mm,Police=\small]{4,5,...,20}{40,42,...,56}
%définition de la fonction + tracé de la courbe
%la fonction ln a été créée pour xint !
\DefinirCourbe[Nom=cf,Debut=5,Fin=19]<f>{-2*x+3+24*ln(2*x)}
\TracerCourbe[Couleur=red,Debut=5,Fin=19]{f(x)}
%ou en une seule commande si "suffisant"
%\DefinirCourbe[Nom=cf,Debut=5,Fin=19,Trace]<f>{-2*x+3+24*ln(2*x)}

\end{GraphiqueTikz}

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
40

42

44

46

48

50

52

54

56

[tkz-grapheur] - 18 -

3.3 Définir/tracer une courbe d’interpolation (simple)

Il est également possible de définir une courbe via des points supports, donc une courbe d’interpolation
simple.

%dans l'environnement GraphiqueTikz
\DefinirCourbeInterpo[clés]{liste des points support}
\TracerCourbeInterpo[clés]{liste des points support}

Les [clés] pour la définition ou le tracé, optionnelles, disponibles sont :

— Nom : nom de la courbe d’interpolation (important pour la suite !) ;

— Couleur : couleur du tracé (black par défaut) ;

— Tension : paramétrage de la tension du tracé d’interpolation (0.5 par défaut) ;

— StyleTrace : style du tracé (vide par défaut) ;

— Trace : booléen pour tracer également la courbe (false par défaut).

L’argument obligatoire permet quant à lui de spécifier la liste des points supports sous la forme
(x1,y1)(x2,y2)....

\begin{GraphiqueTikz}%
[x=0.8cm,y=1cm,Xmin=-7,Xmax=4,Ymin=-3,Ymax=5]
\TracerAxesGrilles[Elargir=2.5mm]{-7,-6,...,4}{-3,-2,...,5}
%courbes d'interpolation simples (avec tension diff)
\DefinirCourbeInterpo[Nom=interpotest,Couleur=blue,Trace]%

{(-6,4)(-2,-2)(3,3.5)}
\DefinirCourbeInterpo[Nom=interpotest,Couleur=red,Trace,Tension=1]%

{(-6,4)(-2,-2)(3,3.5)}
\end{GraphiqueTikz}

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

5

[tkz-grapheur] - 19 -

3.4 Définir/tracer une courbe d’interpolation (Hermite)

Il est également possible de définir une courbe via des points supports, donc une courbe d’interpolation
avec contrôle de la dérivée.
Certaines exploitations demandant des techniques différentes suivant le type de fonction utilisée, une
clé booléenne Spline permettra au code d’adapter ses calculs suivant l’objet utilisé.

%dans l'environnement GraphiqueTikz
\DefinirCourbeSpline[clés]{liste des points support}[\macronomspline]
\TracerCourbeSpline[clés]{liste des points support}[\macronomspline]

Les [clés] pour la définition ou le tracé, optionnelles, disponibles sont :

— Nom : nom de la courbe d’interpolation (important pour la suite !) ;

— Coeffs : modifier (voir la documentation de ProfLycee 5 les coefficients du spline ;

— Couleur : couleur du tracé (black par défaut) ;

— Trace : booléen pour tracer également la courbe (false par défaut) ;

— StyleTrace : style du tracé (vide par défaut) ;

— Alt : booléen pour activer une autre méthode de calcul (false par défaut).

L’argument obligatoire permet quant à lui de spécifier la liste des points supports sous la forme
x1/y1/f’1§x2/y2/f’2§... avec :

— xi/yi les coordonnées du point ;

— f’i la dérivé au point support.

\begin{GraphiqueTikz}%
[x=0.8cm,y=0.8cm,Xmin=-7,Xmax=4,Ymin=-3,Ymax=5]
\TracerAxesGrilles[Elargir=2.5mm]{-7,-6,...,4}{-3,-2,...,5}
%définition de la liste des points support du spline
\def\LISTETEST{-6/4/-2§-5/2/-2§-4/0/-2§-2/-2/0§1/2/2§3/3.5/0.5}
%définition et tracé du spline cubique (x2)
\DefinirCourbeSpline[Nom=splinetest,Trace,Couleur=olive]{\LISTETEST}
\DefinirCourbeSpline[Alt,Nom=splinetest,Trace,Couleur=teal]{\LISTETEST}

\end{GraphiqueTikz}

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

5

5. CTAN : https://ctan.org/pkg/proflycee

[tkz-grapheur] - 20 -

https://ctan.org/pkg/proflycee

3.5 Définir/tracer une courbe d’interpolation (Lagrange)

Il est également possible de définir une courbe d’interpolation de Lagrange (merci à JF Burnol pour
son aide !).
L’idée est d’utiliser une commande permettant de générer le polynôme de Lagrange, utilisable comme
une fonction xint à l’aide des commandes classiques

%dans l'environnement GraphiqueTikz
\GenererPolynomeLagrange[nom fonction]{liste X}{liste Y}
\TracerCourbe[clés]{f(x)}

par défaut, le nom de la fonction définie est polylagrange, mais il peut être modifié.
Une clé (booléenne) spécifique lors du tracé, RestreindreY, permet de limiter les valeurs verticales
liées au phénomène de Runge.
Une commande spécifique de placements des points est également disponible, afin de conserver la
syntaxe de la commande de génération.

\begin{GraphiqueTikz}[Xmin=-5,Xmax=5,Ymin=-2,Ymax=5]
\TracerAxesGrilles[Elargir=2.5mm,Police=\small]{auto}{auto}
\GenererPolynomeLagrange{-4,-1,2,4}{-1,3.5,0,4}
\TracerCourbe[Couleur=violet]{polylagrange(x)}
\MarquerPtsLagrange*[Couleur=blue]{-4,-1,2,4}{-1,3.5,0,4}

\end{GraphiqueTikz}

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

−1

0

1

2

3

4

5

[tkz-grapheur] - 21 -

\begin{GraphiqueTikz}[Xmin=-5,Xmax=5,Ymin=-2,Ymax=5]
\TracerAxesGrilles[Elargir=2.5mm,Police=\small]{auto}{auto}
\GenererPolynomeLagrange{-4,-3,0,2,4}{-1,3.5,2,1,0}
\TracerCourbe[Couleur=red,Nom=cf]{polylagrange(x)}
\MarquerPtsLagrange*[Couleur=blue]{-4,-3,0,2,4}{-1,3.5,2,1,0}
\PlacerAntecedents[Couleurs=teal/cyan,Traits,Nom=PO]{cf}{1.75}

\end{GraphiqueTikz}

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

−1

0

1

2

3

4

5

[tkz-grapheur] - 22 -

\begin{GraphiqueTikz}%
[x=6cm,y=3cm,Xmin=-1.25,Xmax=1.25,Ymin=-0.5,Ymax=2,
Xgrille=0.125,Xgrilles=1,Ygrille=0.25,Ygrilles=0.25]

\TracerAxesGrilles[Elargir=2.5mm,Police=\footnotesize]%
{-1.25,-1,...,1.25}%
{auto}

\GenererPolynomeLagrange%
{seq(i,i=-1..[0.2]..1)} %langage xint :-)
{seq(1/(1+25*i^2),i=-1..[0.2]..1)} %langage xint :-)

\TracerCourbe[Couleur=lime]{1/(25*x^2+1)}
\TracerCourbe[Couleur=red,RestreindreY]{polylagrange(x)}
\MarquerPtsLagrange*[Couleur=blue]%

{-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1}%
{0.038,0.058,0.1,0.2,0.5,1.0,0.5,0.2,0.1,0.058,0.038}

\end{GraphiqueTikz}

−1,25 −1 −0,75 −0,5 −0,25 0 0,25 0,5 0,75 1 1,25

−0,5

−0,25

0

0,25

0,5

0,75

1

1,25

1,5

1,75

2

[tkz-grapheur] - 23 -

3.6 Définir des points sous forme de nœuds

La seconde idée est de travailler avec des nœuds TikZ, qui pourront être utiles pour des tracés de
tangentes, des représentations d’intégrales. . .
Il est également possible de définir des nœuds pour des points image.
Certaines commandes (explicités ultérieurement) permettent de déterminer des points particuliers des
courbes sous forme de nœuds, donc il semble intéressant de pouvoir en définir directement.

%par les coordonnées
\DefinirPts[clés]{Nom1/x1/y1,Nom2/x2/y2,...}

Les [clés], optionnelles, disponibles sont :

— Aff : booléen pour marquer les points (false par défaut) ;

— Couleur : couleur des points, si Aff=true (black par défaut).

%sous forme d'image
\DefinirImage[clés]{objet}{abscisse}

Les [clés], optionnelles, disponibles sont :

— Nom : nom du nœud (vide par défaut) ;

— Spline : booléen pour spécifier qu’un spline est utilisé (false par défaut).

Le premier argument obligatoire est l’objet considéré (nom de la courbe pour le spline, fonction sinon) ;
le second est l’abscisse du point considéré.

[tkz-grapheur] - 24 -

\begin{GraphiqueTikz}%
[x=0.9cm,y=0.425cm,Xmin=4,Xmax=20,Origx=4,
Ymin=40,Ymax=56,Ygrille=2,Ygrilles=1,Origy=40]
\TracerAxesGrilles[Elargir=2.5mm,Police=\small]{4,5,...,20}{40,42,...,56}
%définition de la fonction + tracé de la courbe
\DefinirFonction[Nom=cf,Debut=5,Fin=19,Trace,Couleur=red]<f>{-2*x+3+24*log(2*x)}
%nœuds manuels
\DefinirPts[Aff,Couleur=brown]{A/7/42,B/16/49}
%nœud image
\DefinirImage[Nom=IMGf]{f}{14}
\MarquerPts*[Style=x,Couleur=blue]{(IMGf)}

\end{GraphiqueTikz}

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
40

42

44

46

48

50

52

54

56

[tkz-grapheur] - 25 -

3.7 Marquage de points

L’idée est de proposer de quoi marquer des points avec un style particulier.

%dans l'environnement GraphiqueTikz
\MarquerPts(*)[clés]<police>{liste}

La version étoilée marque les points sans les « noms », alors que la version non étoilée les affiche :

— dans le cas de la version étoilée, la liste est à donner sous la forme (ptA),(ptB),... ;

— sinon, la liste est à donner sous la forme (ptA)/labelA/poslabelA,....

Les [clés], optionnelles, disponibles sont :

— Couleur : couleur (black par défaut) ;

— Style : style des marques (o par défaut).

\begin{GraphiqueTikz}[x=1.5cm,y=1.5cm,Ymin=-2]
\TracerAxesGrilles[Elargir=2.5mm]{auto}{auto}
\DefinirPts{A/1.75,-1.25}\MarquerPts[Couleur=pink]{(A)/A/below} %rond (par défaut)
\MarquerPts[Couleur=teal]{(1,1)/M/below}
\MarquerPts[Couleur=red,Style=x]{(1.25,1)/A/below} %croix
\MarquerPts[Couleur=orange,Style=+]<\small\sffamily>{(1.5,1)/K/below} %plus
\MarquerPts[Couleur=blue,Style=c]{(1.75,1)/P/below} %carré
\MarquerPts[Couleur=gray,Style=d]{(2,1)/P/below} %diamant
\MarquerPts*[Couleur=orange/yellow]{(2,2),(2.5,2.25)} %rond bicolore
\MarquerPts*[Style=+,Couleur=red]{(1,2)}
\MarquerPts*[Style=x,Couleur=blue]{(2.25,1)}
\MarquerPts*[Style=c,Couleur=magenta]{(-2,-1)}
\MarquerPts[Couleur=red,Style=x]{(-1,1)/A/below,(-2,2)/B/below left}

\end{GraphiqueTikz}

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

A

MA K P PA

B

À noter qu’il est également possible de modifier la taille des marques o/x/+/c via les [clés] :

— Taillex=... (2pt par défaut) pour les points croix ;

— Tailleo=... (1.75pt par défaut) pour les points cercle ;

— Taillec=... (2pt par défaut) pour les points carré.

[tkz-grapheur] - 26 -

\begin{GraphiqueTikz}[x=1cm,y=1cm,Xmin=0,Ymin=0]
\TracerAxesGrilles[Elargir=2.5mm]{auto}{auto}
\MarquerPts[Couleur=red,Style=x,Taillex=3.5pt]{(1.25,1.25)/A/below}
\MarquerPts[Couleur=teal,Tailleo=2.5pt]{(2,2)/A/right}
\MarquerPts*[Couleur=orange,Style=c,Taillec=4pt]{(0.5,2.5)}

\end{GraphiqueTikz}

0 1 2 3
0

1

2

3

A

A

3.8 Marquer des points de discontinuité

Il est possible de marquer des points de discontinuité, mais c’est commande est déconnectée des com-
mandes de tracé de courbes/splines.

%dans l'environnement GraphiqueTikz
\AfficherPtsDiscont[clés]{liste}

Le premier argument, optionnel et entre [...], contient les Clés suivantes :

— Couleur=... (black par défaut) ;

— Pos=... (D par défaut) pour choisir la position de la discontinuité (parmi G/D) ;

— Echelle=... (1 par défaut) pour modifier l’échelle du symbole ;

— Type=... (par par défaut) pour choisir le type de symbole, parmi par/cro/rond/demirond.

Le second argument, obligatoire et entre {...} permet de préciser la liste des points en lesquels le
symbole de discontinuité sera positionné, sous la forme x1/y1/d1 § x2/y2/d2 § ... avec les points
(xi;yi) et f’(xi)=di.

[tkz-grapheur] - 27 -

\begin{GraphiqueTikz}[x=1cm,y=1cm,Xmin=0,Xmax=10,Ymin=0,Ymax=5]
\TracerAxesGrilles[Elargir=2.5mm]{auto}{auto}
\DefinirCourbeSpline[Trace,Couleur=red]{0/1/-1 § 4/4/0}
\AfficherPtsDiscont{4/4/0}
\AfficherPtsDiscont[Pos=G,Type=cro]{0/1/-1}
\DefinirCourbeSpline[Trace,Couleur=blue]{5/1/1.5 § 8/4/0.5}
\AfficherPtsDiscont[Couleur=blue,Type=rond]{8/4/0.5}
\AfficherPtsDiscont[Couleur=blue,Pos=G,Type=demirond,Echelle=2]{5/1/1.5}

\end{GraphiqueTikz}

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

3.9 Récupérer les coordonnées de nœuds

Il est également possible, dans l’optique d’une réutilisation de coordonnées, de récupérer les coordonnées
d’un nœud (défini ou déterminé).
Les calculs étant effectués en flottant en fonction des unités (re)calculées, les valeurs sont donc appro-
chées !

%dans l'environnement GraphiqueTikz
\RecupererAbscisse{nœud}[\macrox]
\RecupererOrdonnee{nœud}[\macroy]
\RecupererCoordonnees{nœud}[\macrox][\macroy]

3.10 Placer du texte

À noter qu’une commande de placement de texte est disponible.

%dans l'environnement GraphiqueTikz
\PlacerTexte[clés]{(nœud ou coordonnées)}{texte}

Les [clés] disponibles sont :

— Police=... (\normalsize\normalfont par défaut) pour la police ;

— Couleur=... (black par défaut) pour la couleur ;

— Position=... (vide par défaut) pour la position du texte par rapport aux coordonnées.

[tkz-grapheur] - 28 -

\begin{GraphiqueTikz}[x=1cm,y=1cm,Xmin=0,Xmax=5,Ymin=0,Ymax=1]
\TracerAxesGrilles[Elargir=2.5mm]{auto}{auto}
\PlacerTexte[Couleur=red,Police=\LARGE,Position=right]{(1.5,0.5)}{courbe C_1}

\end{GraphiqueTikz}

0 1 2 3 4 5
0

1
courbe C1

[tkz-grapheur] - 29 -

4 Commandes spécifiques d’exploitation des courbes

4.1 Placement d’images

Il est possible de la placer des points (images) sur une courbe, avec traits de construction éventuels.
La fonction/courbe utilisée doit avoir été déclarée précédemment pour que cette commande fonctionne.

%dans l'environnement GraphiqueTikz
\PlacerImages[clés]{fonction ou courbe}{liste d'abscisses}

Les [clés], optionnelles, disponibles sont :

— Traits : booléen pour afficher les traits de construction (false par défaut) ;

— Couleurs : couleur des points/traits, sous la forme Couleurs ou CouleurPoint/CouleurTraits ;

— Spline : booléen pour préciser que la courbe utilisée est définie comme un spline (false par
défaut).

Le premier argument obligatoire, permet de spécifier :

— le nom de la courbe dans la cas Spline=true ;

— le nom de la fonction sinon.

\begin{GraphiqueTikz}%
[x=0.9cm,y=0.425cm,Xmin=4,Xmax=20,Origx=4,
Ymin=40,Ymax=56,Ygrille=2,Ygrilles=1,Origy=40]
\TracerAxesGrilles[Elargir=2.5mm,Police=\small]{4,5,...,20}{40,42,...,56}
%définition de la fonction + tracé de la courbe
\DefinirCourbe[Nom=cf,Debut=5,Fin=19,Trace,Couleur=red]<f>{-2*x+3+24*log(2*x)}
%images
\PlacerImages[Traits,Couleurs=teal/blue]{f}{6,7,8,9,10}

\end{GraphiqueTikz}

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
40

42

44

46

48

50

52

54

56

[tkz-grapheur] - 30 -

4.2 Détermination d’antécédents

Il est possible de déterminer graphiquement les antécédents d’un réel donné.
La fonction/courbe utilisée doit avoir été déclarée précédemment pour que cette commande fonctionne.

%dans l'environnement GraphiqueTikz
\TrouverAntecedents[clés]{courbe}{k}

Les [clés], optionnelles, disponibles sont :

— Nom : base du nom des nœuds intersection (S par défaut, ce qui donnera S-1, S-2, etc) ;

— Aff : booleen pour afficher les points (true par défaut) ;

— Couleur : couleur des points (black par défaut) ;

— AffDroite : booleen pour afficher la droite horizontale (false par défaut).

Le premier argument obligatoire, permet de spécifier le nom de la courbe.
Le second argument obligatoire, permet de spécifier la valeur à atteindre.

\begin{GraphiqueTikz}%
[x=0.9cm,y=0.425cm,Xmin=4,Xmax=20,Origx=4,
Ymin=40,Ymax=56,Ygrille=2,Ygrilles=1,Origy=40]
\TracerAxesGrilles[Elargir=2.5mm,Police=\small]{4,5,...,20}{40,42,...,56}
%définition de la fonction + tracé de la courbe
\DefinirCourbe[Nom=cf,Debut=5,Fin=19,Trace,Couleur=red]<f>{-2*x+3+24*log(2*x)}
%antécédents
\TrouverAntecedents[Couleur=teal,AffDroite,Aff]{cf}{53}
%les deux antécédents sont aux nœuds (S-1) et (S-2)

\end{GraphiqueTikz}

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
40

42

44

46

48

50

52

54

56

[tkz-grapheur] - 31 -

4.3 Construction d’antécédents

Il est possible de construire graphiquement les antécédents d’un réel donné.
La fonction/courbe utilisée doit avoir été déclarée précédemment pour que cette commande fonctionne.

%dans l'environnement GraphiqueTikz
\PlacerAntecedents[clés]{courbe}{k}

Les [clés], optionnelles, disponibles sont :

— Couleurs : couleur des points/traits, sous la forme Couleurs ou CouleurPoint/CouleurTraits ;
— Nom : nom éventuel pour les points d’intersection liés aux antécédents (vide par défaut) ;
— Traits : booleen pour afficher les traits de construction (false par défaut).

Le premier argument obligatoire, permet de spécifier le nom de la courbe.
Le second argument obligatoire, permet de spécifier la valeur à atteindre.

\begin{GraphiqueTikz}%
[x=0.9cm,y=0.425cm,Xmin=4,Xmax=20,Origx=4,
Ymin=40,Ymax=56,Ygrille=2,Ygrilles=1,Origy=40]
\TracerAxesGrilles[Elargir=2.5mm,Police=\small]{4,5,...,20}{40,42,...,56}
%définition de la fonction + tracé de la courbe
\DefinirCourbe[Nom=cf,Debut=5,Fin=19,Trace,Couleur=red]<f>{-2*x+3+24*log(2*x)}
%antécédents
\PlacerAntecedents[Couleurs=teal/cyan,Traits,Nom=PO]{cf}{53}
\RecupererAbscisse{(PO-1)}[\premsol]
\RecupererAbscisse{(PO-2)}[\deuxsol]

\end{GraphiqueTikz}

Graphiquement, les antécédents de 53 sont (environ) :

\begin{itemize}
\item \num{\premsol}
\item \num{\deuxsol}

\end{itemize}

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
40

42

44

46

48

50

52

54

56

Graphiquement, les antécédents de 53 sont (environ) :

— 7,505 389 008 644 637

— 18,007 022 378 275 07

[tkz-grapheur] - 32 -

4.4 Intersections de deux courbes

Il est également possible de déterminer (sous forme de nœuds) les éventuels points d’intersection de
deux courbes préalablement définies.

%dans l'environnement GraphiqueTikz
\TrouverIntersections[clés]{courbe1}{courbe2}

Les [clés], optionnelles, disponibles sont :

— Nom : base du nom des nœuds intersection (S par défaut, ce qui donnera S-1, S-2, etc) ;

— Aff : booléen pour afficher les points (true par défaut) ;

— Couleur : couleur des points (black par défaut).

Le premier argument obligatoire, permet de spécifier le nom de la première courbe.
Le premier argument obligatoire, permet de spécifier le nom de la seconde courbe.

\begin{GraphiqueTikz}%
[x=0.9cm,y=0.425cm,Xmin=4,Xmax=20,Origx=4,
Ymin=40,Ymax=56,Ygrille=2,Ygrilles=1,Origy=40]
\TracerAxesGrilles[Elargir=2.5mm,Police=\small]{4,5,...,20}{40,42,...,56}
\DefinirCourbe[Nom=cf,Debut=5,Fin=19,Trace,Couleur=red]<f>{-2*x+3+24*log(2*x)}
\DefinirCourbe[Nom=cg,Debut=5,Fin=19,Trace,Couleur=blue]<g>{0.25*(x-12)^2+46}
%intersections, nommées (TT-1) et (TT-2)
\TrouverIntersections[Nom=TT,Couleur=darkgray,Aff,Traits]{cf}{cg}
%récupération des points d'intersection
\RecupererCoordonnees{(TT-1)}[\alphaA][\betaA]
\RecupererCoordonnees{(TT-2)}[\alphaB][\betaB]

\end{GraphiqueTikz}\\
Les solutions de $f(x)=g(x)$ sont $\alpha \approx \num{\alphaA}$ et
$\beta \approx \num{\alphaB}$.\\
Les points d'intersection des courbes de f et de g sont donc
$(\ArrondirNum[2]{\alphaA};\ArrondirNum[2]{\betaA})$ et
$(\ArrondirNum[2]{\alphaB};\ArrondirNum[2]{\betaB})$.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
40

42

44

46

48

50

52

54

56

Les solutions de f(x) = g(x) sont α ≈ 6,977 766 172 581 613 et β ≈ 17,429 687 326 385 03.
Les points d’intersection des courbes de f et de g sont donc (6,98; 52,31) et (17,43; 53,37).

[tkz-grapheur] - 33 -

4.5 Extremums

L’idée (encore expérimentale) est de proposer des commandes pour extraire les extremums d’une courbe
définie par le package.
La commande crée le nœud correspondant, et il est du coup possible de récupérer ses coordonnées pour
exploitation ultérieure.
Il est possible, en le spécifiant, de travailler sur les différentes courbes gérées par le package (fonction,
interpolation, spline).
Pour des courbes singulières, il est possible que les résultats ne soient pas tout à fait ceux attendus. . .
X Pour le moment, les limitations sont :

— pas de gestion d’extremums multiples (seul le premier sera traité). . .

— pas de gestion d’extremums aux bornes du tracé. . .

— pas de récupération automatique des paramètres de définition des courbes. . .

— le temps de compilation peut être plus long. . .

%dans l'environnement GraphiqueTikz
\TrouverMaximum[clés]{objet}[nœud créé]
\TrouverMinimum[clés]{objet}[nœud créé]

Les [clés], optionnelles, disponibles sont :

— Methode : méthode, parmi fonction/interpo/spline pour les calculs (fonction par défaut) ;

— Debut : début du tracé (\pflxmin par défaut) ;

— Fin : fin du tracé (\pflxmax par défaut) ;

— Pas : pas du tracé si fonction (il est déterminé automatiquement au départ mais peut être
modifié) ;

— Coeffs : modifier les coefficients du spline si spline ;

— Tension : paramétrage de la tension du tracé d’interpolation si interpo(0.5 par défaut).

[tkz-grapheur] - 34 -

\begin{GraphiqueTikz}[x=1cm,y=1cm,Xmin=-1,Xmax=5,Ymin=-1,Ymax=3]
\TracerAxesGrilles[Elargir=2.5mm]{auto}{auto}
\DefinirCourbe[Nom=cf,Debut=0.35,Fin=4.2,Trace]%

<f>{0.6*cos(4.5*(x-4)+2.1)-1.2*sin(x-4)+0.1*x+0.2}
\TrouverMaximum[Debut=0.35,Fin=4.2]{f}[cf-max]
\TrouverMaximum[Debut=3,Fin=4]{f}[cf-maxlocal]
\TrouverMinimum[Debut=1,Fin=2]{f}[cf-minlocal]
\MarquerPts*[Couleur=red,Traits]{(cf-max)}
\MarquerPts*[Couleur=blue,Traits]{(cf-maxlocal)}
\MarquerPts*[Couleur=olive,Traits]{(cf-minlocal)}
\RecupererCoordonnees{(cf-max)}[\MonMaxX][\MonMaxY]

\end{GraphiqueTikz}\\
Le maximum est $M\approx\ArrondirNum{\MonMaxY}$, atteint en

$x\approx\ArrondirNum{\MonMaxX}$↪→

−1 0 1 2 3 4 5

−1

0

1

2

3

Le maximum est M ≈ 2,17, atteint en x ≈ 2,17

[tkz-grapheur] - 35 -

\begin{GraphiqueTikz}[x=0.8cm,y=1cm,Xmin=-7,Xmax=4,Ymin=-3,Ymax=5]
\TracerAxesGrilles[Elargir=2.5mm]{-7,-6,...,4}{-3,-2,...,5}
\DefinirCourbeInterpo[Nom=interpotest,Couleur=red,Trace,Tension=1]%
{(-6,4)(-2,-2)(3,3.5)}
\TrouverMinimum[Methode=interpo,Tension=1]{(-6,4)(-2,-2)(3,3.5)}[interpo-min]
\MarquerPts*[Couleur=blue]{(interpo-min)}
\RecupererCoordonnees{(interpo-min)}[\MinInterpoX][\MinInterpoY]

\end{GraphiqueTikz}\\
Le minimum est $M\approx\ArrondirNum[3]{\MinInterpoY}$, atteint en

$x\approx\ArrondirNum[3]{\MinInterpoX}$↪→

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

5

Le minimum est M ≈ −2,003, atteint en x ≈ −1,908

[tkz-grapheur] - 36 -

\begin{GraphiqueTikz}%
[x=1.2cm,y=1.6cm,Xmin=-7,Xmax=4,Ymin=-3,Ymax=3,Ygrille=0.5,Ygrilles=0.25]
\TracerAxesGrilles[Elargir=2.5mm]{auto}{auto}
\def\LISTETEST{-6/2/0§-1/-2/0§2/1/0§3.5/0/-1}
\DefinirCourbeSpline[Nom=splinetest,Trace]{\LISTETEST}
\TrouverMinimum[Methode=spline]{\LISTETEST}[spline-min]
\MarquerPts*[Couleur=red]{(spline-min)}

\end{GraphiqueTikz}

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4

−3

−2,5

−2

−1,5

−1

−0,5

0

0,5

1

1,5

2

2,5

3

[tkz-grapheur] - 37 -

4.6 Intégrales (version améliorée)

On peut également travailler avec des intégrales.
Dans ce cas il est préférable de mettre en évidence le domaine avant les tracés, pour éviter la surim-
pression par rapport aux courbes/points.
Il est possible de :

— représenter une intégrale sous une courbe définie ;
— représenter une intégrale entre deux courbes ;
— les bornes d’intégration peuvent être des abscisses et/ou des nœuds.

X Compte-tenu des différences de traitement entre les courbes par formule, les courbes par interpolation
simple ou les courbes par interpolation cubique, les arguments et clés peuvent différer suivant la
configuration !

%dans l'environnement GraphiqueTikz
\TracerIntegrale[clés]<options spécifiques>{objet1}[objet2]{A}{B}

Les [clés] pour la définition ou le tracé, optionnelles, disponibles sont :

— Couleurs = : couleurs du remplissage, sous la forme Couleur ou CouleurBord/CouleurFond
(gray par défaut) ;

— Style : type de remplissage, parmi remplissage/hachures (remplissage par défaut) ;
— Opacite : opacité (0.5 par défaut) du remplissage ;
— Hachures : style (north west lines par défaut) du remplissage hachures ;
— Type : type d’intégrale parmi

— fct (défaut) pour une intégrale sous une courbe définie par une formule ;
— spl pour une intégrale sous une courbe définie par un spline cublique ;
— fct/fct pour une intégrale entre deux courbes définie par une formule ;
— fct/spl pour une intégrale entre une courbe (dessus) définie par une formule et une courbe

(dessous) définie par un spline cubique ;
— etc

— Pas : pas (calculé par défaut sinon) pour le tracé ;
— Jonction : jonction des segments (bevel par défaut) ;
— Bornes : type des bornes parmi :

— abs pour les bornes données par les abscisses ;
— noeuds pour les bornes données par les nœuds ;
— abs/noeud pour les bornes données par abscisse et nœud ;
— noeud/abs pour les bornes données par nœud et abscisse ;

— Bord : booléen (true par défaut) pour afficher les traits latéraux,
— NomSpline : macro (important !) du spline généré précédemment pour un spline en version supé-

rieure ;
— NomSplineB : macro (important !) du spline généré précédemment pour un spline en version

inférieure ;
— NomInterpo : nom (important !) de la courbe d’interpolation générée précédemment, en version

supérieure ;
— NomInterpoB : nom (important !) de la courbe d’interpolation générée précédemment, en version

inférieure ;
— Tension : tension pour la courbe d’interpolation générée précédemment, en version supérieure ;
— TensionB : tension de la courbe d’interpolation générée précédemment, en version inférieure.

[tkz-grapheur] - 38 -

Le premier argument obligatoire est la fonction ou la courbe du spline ou la liste de points d’interpo-
lation.
L’argument suivant, optionnel, est la fonction ou la courbe du spline ou la liste de points d’interpolation.
Les deux derniers arguments obligatoires sont les bornes de l’intégrale, données sous une forme en
adéquation avec la clé Bornes.

[tkz-grapheur] - 39 -

Dans le cas de courbes définies par des points, il est nécessaire de travailler sur des intervalles sur
lesquels la première courbe est au-dessus de la deuxième.
Il sera sans doute intéressant de travailler avec les intersections dans ce cas.

\begin{GraphiqueTikz}%
[x=0.6cm,y=0.06cm,
Xmin=0,Xmax=21,Xgrille=1,Xgrilles=0.5,
Ymin=0,Ymax=155,Ygrille=10,Ygrilles=5]
\TracerAxesGrilles%

[Grads=false,Elargir=2.5mm]{}{}
\DefinirCourbe[Nom=cf,Debut=1,Fin=20,Couleur=red]<f>{80*x*exp(-0.2*x)}
\TracerIntegrale

[Bornes=abs,Couleurs=blue/cyan!50]%
{f(x)}{3}{12}

\TracerCourbe[Couleur=red,Debut=1,Fin=20]{f(x)}
\TracerAxesGrilles%

[Grille=false,Elargir=2.5mm,Police=\small]{0,1,...,20}{0,10,...,150}
\end{GraphiqueTikz}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

[tkz-grapheur] - 40 -

\begin{GraphiqueTikz}%
[x=1.2cm,y=1.6cm,Xmin=-7,Xmax=4,Ymin=-3,Ymax=3,Ygrille=0.5,Ygrilles=0.25]
\TracerAxesGrilles[Grads=false,Elargir=2.5mm]{}{}
\def\LISTETEST{-6/2/0§-1/-2/0§2/1/0§3.5/0/-1}
\DefinirCourbeSpline[Nom=splinetest]{\LISTETEST}
\TracerIntegrale[Type=spl,Style=hachures,Couleurs=purple]{splinetest}{-5.75}{-4.75}
\TracerIntegrale[Type=spl,Couleurs=blue]{splinetest}{-2}{-1}
\TracerIntegrale[Type=spl,Couleurs=orange]{splinetest}{1}{3}
\TracerCourbeSpline[Couleur=olive]{\LISTETEST}
\TracerAxesGrilles[Grille=false,Elargir=2.5mm]

{-7,-6,...,4}%
{-3,-2.5,...,3}

\end{GraphiqueTikz}

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4

−3

−2,5

−2

−1,5

−1

−0,5

0

0,5

1

1,5

2

2,5

3

[tkz-grapheur] - 41 -

4.7 Tangentes

L’idée de cette commande est de tracer la tangente à une courbe précédemment définie, en spécifiant :

— le point (abscisse ou nœud) en lequel on souhaite travailler ;
— éventuellement le direction (dans le cas d’une discontinuité ou d’une borne) ;
— éventuellement le pas (h) du calcul ;
— les écartements latéraux pour tracer la tangente.

%dans l'environnement GraphiqueTikz
\TracerTangente[clés]{fonction ou courbe}{point}<options traits>

Les [clés] pour la définition ou le tracé, optionnelles, disponibles sont :

— Couleurs = : couleurs des tracés, sous la forme Couleur ou CouleurLigne/CouleurPoint (black
par défaut) ;

— DecG = : écartement horizontal gauche pour débuter le tracé (1 par défaut) ;
— DecD = : écartement horizontal gauche pour débuter le tracé (1 par défaut) ;
— AffPoint : booléen pour afficher le point support (false par défaut) ;
— Spline : booléen pour préciser qu’un spline est utilisé (false par défaut) ;
— h : pas h utilisé pour les calculs (0.01 par défaut) ;
— Sens : permet de sprécifier le sens de la tangente, parmi gd/g/d (gd par défaut) ;
— Noeud : booléen pour préciser qu’un nœud est utilisé (false par défaut).

Le premier argument obligatoire est la fonction ou la courbe du spline (le cas échéant).
Le dernier argument obligatoire est le point de travail (version abscisse ou nœud suivant la clé Noeud).

\begin{GraphiqueTikz}%
[x=0.9cm,y=0.425cm,Xmin=4,Xmax=20,Origx=4,
Ymin=40,Ymax=56,Ygrille=2,Ygrilles=1,Origy=40]
\TracerAxesGrilles[Elargir=2.5mm,Police=\small]{4,5,...,20}{40,42,...,56}
\DefinirCourbe[Nom=cf,Debut=5,Fin=19,Couleur=red,Trace]<f>{-2*x+3+24*log(2*x)}
\TrouverAntecedents[Couleur=teal,Nom=JKL,Aff=false]{cf}{53}
%tangente
\TracerTangente%

[Couleurs=cyan/gray,DecG=2.5,DecD=2.5,Noeud,AffPoint]{f}{(JKL-1)}
\end{GraphiqueTikz}

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
40

42

44

46

48

50

52

54

56

[tkz-grapheur] - 42 -

\begin{GraphiqueTikz}%
[x=0.8cm,y=1cm,Xmin=-7,Xmax=4,Ymin=-3,Ymax=5]
\TracerAxesGrilles[Elargir=2.5mm]{-7,-6,...,4}{-3,-2,...,5}
\def\LISTETEST{-6/4/-0.5§-5/2/-2§-4/0/-2§-2/-2/0§1/2/2§3/3.5/0.5}
\DefinirCourbeSpline[Nom=splinetest,Trace,Couleur=olive]{\LISTETEST}
\TracerTangente[Couleurs=red,Spline,AffPoint]{splinetest}{1}
\TracerTangente%

[Couleurs=blue,Spline,DecG=1.5,DecD=1.5,AffPoint]{splinetest}{-3}%
<pflflechegd>

\TracerTangente[Sens=g,Couleurs=orange,Spline,DecG=1.5,AffPoint]{splinetest}{3}
\TracerTangente[Sens=d,Couleurs=violet,Spline,DecD=1.5,AffPoint]{splinetest}{-6}

\end{GraphiqueTikz}

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

5

[tkz-grapheur] - 43 -

4.8 Suites récurrentes et toiles

L’idée est d’obtenir une commande pour tracer la « toile » permettant d’obtenir – graphiquement – les
termes d’une suite récurrente définie par une relation un+1 = f(un).
La commande est compatible avec une fonction précédemment définie, mais également avec une courbe
type spline précédemment définie.

%dans l'environnement GraphiqueTikz
\TracerToileRecurrence[clés]{fct ou courbe}

Le premier argument, optionnel et entre [...], contient les Clés suivantes :

— Couleur=... (black par défaut) ;

— Spline=... (false par défaut) pour spécifier qu’une courbe spline est utilisée ;

— No=... (0 par défaut) est l’indice initial ;

— Uno=... est qui est la valeur du terme initial (à donner obligatoirement !) ;

— Nom=... (u par défaut) est le nom de la suite ;

— Nb=... (5 par défaut) ;

— AffTermes=... (false par défaut) qui est un booléen pour afficher les termes ;

— AffPointilles=... (true par défaut) pour afficher les pointillés ;

— TailleLabel=... (\small par défaut) ;

— PosLabel=... (below par défaut).

Le second argument, obligatoire et entre {...} permet de préciser l’objet avec lequel il faut effectuer
les tracés (fonction ou nom_courbe).

\begin{GraphiqueTikz}%
[x=0.75cm,y=0.75cm,Xmin=0,Xmax=10,Xgrille=1,Xgrilles=0.5,
Ymin=0,Ymax=8,Ygrille=1,Ygrilles=0.5]
\TracerAxesGrilles[Elargir=2.5mm,Police=\small]{auto}{auto}
\DefinirCourbe[Couleur=red,Nom=cf,Debut=0,Fin=10,Trace]<f>{sqrt(5*x)+1}
\TracerCourbe[Couleur=blue]{x}
\TracerToileRecurrence[Couleur=orange,No=1,Uno=1]{f}

\end{GraphiqueTikz}

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

[tkz-grapheur] - 44 -

\begin{GraphiqueTikz}[x=4cm,y=3cm,Xmin=0,Xmax=2.5,Xgrille=1,Xgrilles=0.25,
Ymin=0,Ymax=1.25,Ygrille=0.5,Ygrilles=0.25]
\TracerAxesGrilles[Elargir=2.5mm,Police=\small]{auto}{auto}
\DefinirCourbeInterpo[Nom=interpotest,Couleur=blue,Trace]%

{(0,0)(0.5,0.75)(1,0.25)(2,1)(2.5,0.25)}
\TracerCourbe[Couleur=olive]{x}
\TracerToileRecurrence%

[AffTermes,Couleur=purple,Spline,No=0,Uno=2,PosLabel=above left]%
{interpotest}

\end{GraphiqueTikz}

0 1 2
0

0,5

1

u0u1u2 u3 u4

[tkz-grapheur] - 45 -

4.9 Inégalité linéaire

L’idée (en test) est d’obtenir une commande pour représenter graphiquement une inégalité linéaire.

%dans l'environnement GraphiqueTikz
\InegaliteLineaire[clés]<nom fct>{expression}{sens inégalité}

Le premier argument, optionnel et entre [...], contient les Clés suivantes :

— Opacite=... (0.25 par défaut) ;

— Couleur=... (black par défaut) ;

— Style=... (hachures par défaut) ;

— Hachures=... (north west lines par défaut).

\begin{GraphiqueTikz}[x=0.4cm,y=0.4cm,Xmin=-5,Xmax=5,Ymin=-5,Ymax=5]
\TracerAxesGrilles[Police=\tiny]{auto}{auto}
\InegaliteLineaire[Couleur=blue]{-3x+2}{>0}

\end{GraphiqueTikz}
~~
\begin{GraphiqueTikz}[x=0.4cm,y=0.4cm,Xmin=-5,Xmax=5,Ymin=-5,Ymax=5]

\TracerAxesGrilles[Police=\tiny]{auto}{auto}
\InegaliteLineaire[Couleur=pink]{-x+y+2}{<=0}

\end{GraphiqueTikz}
~~
\begin{GraphiqueTikz}[x=0.4cm,y=0.4cm,Xmin=-5,Xmax=5,Ymin=-5,Ymax=5]

\TracerAxesGrilles[Police=\tiny]{auto}{auto}
\InegaliteLineaire[Couleur=teal]{-x+y-4}{>0}

\end{GraphiqueTikz}

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

[tkz-grapheur] - 46 -

\begin{GraphiqueTikz}[x=0.4cm,y=0.4cm,Xmin=-5,Xmax=5,Ymin=-5,Ymax=5]
\TracerAxesGrilles[Police=\tiny]{auto}{auto}
\InegaliteLineaire[Couleur=blue]{-4*y+5}{<=0}

\end{GraphiqueTikz}
~~
\begin{GraphiqueTikz}[x=0.4cm,y=0.4cm,Xmin=-5,Xmax=5,Ymin=-5,Ymax=5]

\TracerAxesGrilles[Police=\tiny]{auto}{auto}
\InegaliteLineaire[Couleur=pink,Hachures={north east lines}]{-x-2y+2}{<=0}

\end{GraphiqueTikz}
~~
\begin{GraphiqueTikz}[x=0.4cm,y=0.4cm,Xmin=-5,Xmax=5,Ymin=-5,Ymax=5]

\TracerAxesGrilles[Police=\tiny]{auto}{auto}
\InegaliteLineaire[Style=remplissage,Couleur=teal]{-x-y-4}{>0}

\end{GraphiqueTikz}

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

[tkz-grapheur] - 47 -

5 Commandes spécifiques des fonctions de densité

5.1 Loi normale

L’idée est de proposer de quoi travailler avec des lois normales.

%dans l'environnement GraphiqueTikz
\DefinirLoiNormale[clés]<nom fct>{mu}{sigma}
\TracerLoiNormale[clés]{fct(x)}

Les [clés], optionnelles, disponibles sont :

— Nom : nom du tracé (gaussienne par défaut) ;

— Trace : booléen pour tracer la courbe(false par défaut) ;

— Couleur : couleur du tracé, si demandé (black par défaut) ;

— Debut : borne inférieure de l’ensemble de définition (\pflxmin par défaut) ;

— Fin : borne inférieure de l’ensemble de définition (\pflxmax par défaut) ;

— Pas : pas du tracé (il est déterminé automatiquement au départ mais peut être modifié).

À noter que l’axe vertical est à adapter en fonction des paramètres de la loi normale.

\begin{GraphiqueTikz}%
[x=1.25cm,y=15cm,Origx=5,Xmin=5,Xmax=15,Ymin=0,Ymax=0.3,
Ygrille=0.1,Ygrilles=0.05]

\TracerAxesGrilles[Elargir=2.5mm]{auto}{auto}
\DefinirLoiNormale[Nom=gaussienne]<phi>{10}{1.5}
\TracerIntegrale

[Bornes=abs,Couleurs=blue/cyan!50]%
{phi(x)}{7}{13}

\TracerLoiNormale[Couleur=violet,Debut=5,Fin=15]{phi(x)}
\end{GraphiqueTikz}

5 6 7 8 9 10 11 12 13 14 15
0

0,1

0,2

0,3

[tkz-grapheur] - 48 -

5.2 Loi du khi deux

L’idée est de proposer de quoi travailler avec des lois normales.

%dans l'environnement GraphiqueTikz
\DefinirLoiKhiDeux[clés]<nom fct>{k}
\TracerLoiKhiDeux[clés]{fct(x)}

Les [clés], optionnelles, disponibles sont :

— Nom : nom du tracé (gaussienne par défaut) ;
— Trace : booléen pour tracer la courbe(false par défaut) ;
— Couleur : couleur du tracé, si demandé (black par défaut) ;
— Debut : borne inférieure de l’ensemble de définition (\pflxmin par défaut) ;
— Fin : borne inférieure de l’ensemble de définition (\pflxmax par défaut) ;
— Pas : pas du tracé (il est déterminé automatiquement au départ mais peut être modifié).

À noter que l’axe vertical est à adapter en fonction du paramètre de la loi du khi deux.

\begin{GraphiqueTikz}[
x=1.5cm,y=7.5cm,
Xmin=0,Xmax=8,Xgrille=1,Xgrilles=0.5,
Ymin=0,Ymax=0.5,Ygrille=0.1,Ygrilles=0.05
]

\TracerAxesGrilles[Elargir=2.5mm]{auto}{auto}
\DefinirLoiKhiDeux[Couleur=red,Debut=0.25,Trace]<phiA>{1}
\DefinirLoiKhiDeux[Couleur=blue,Trace]<phiB>{2}
\DefinirLoiKhiDeux[Couleur=orange,Trace]<phiC>{3}
\DefinirLoiKhiDeux[Couleur=violet,Trace]<phiD>{4}
\DefinirLoiKhiDeux[Couleur=yellow,Trace]<phiE>{5}
\DefinirLoiKhiDeux[Couleur=teal,Trace]<phiF>{6}

\end{GraphiqueTikz}

0 1 2 3 4 5 6 7 8
0

0,1

0,2

0,3

0,4

0,5

5.3 Histogramme pour une loi binomiale

Il est également possible (d’une manière moins explicite que dans ProfLycee) de représenter l’histo-
gramme d’une loi binomiale (ProfLycee permet de déterminer les unités automatiquement, ici elles
doivent être précisées et connues).
Il est également possible de rajouter la loi normale « associée ».

%dans l'environnement GraphiqueTikz
\TracerHistoBinomiale[clés]<nom fct normale>{n}{p}

Le premier argument, optionnel et entre [...] propose les clés suivantes :

[tkz-grapheur] - 49 -

— Plage : plage, sous la forme a-b du coloriage éventuel ;

— CouleurPlage : couleur de la plage éventuelle ;

— ClipX : restriction de l’axe Ox, sous la forme a-b ;

— AffNormale : booléen (true par défaut) pour rajouter la loi normale ;

— CouleurNormale : couleur pour la loi normale.

Les arguments obligatoires et entre {...} permettent de spécifier les paramètres de la loi binomiale.

%les unités ont été déterminées au préalable...
\begin{GraphiqueTikz}[x=0.2cm,y=50cm,Origx=-0.5,Xmin=-0.5,Xmax=50.5,

Xgrille=5,Xgrilles=1,Ymin=0,Ymax=0.12,Ygrille=0.01,Ygrilles=0.001]
\TracerAxesGrilles[Elargir=2.5mm,Police=\small,Grille=false]%

{0,5,...,50}{auto}
\TracerHistoBinomiale{50}{0.4}

\end{GraphiqueTikz}

0 5 10 15 20 25 30 35 40 45 50
0

0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08
0,09
0,1

0,11
0,12

[tkz-grapheur] - 50 -

%les unités ont été déterminées au préalable...
\begin{GraphiqueTikz}[x=0.5cm,y=100cm,Origx=14.5,Xmin=14.5,Xmax=35.5,

Xgrille=5,Xgrilles=1,Ymin=0,Ymax=0.09,Ygrille=0.01,Ygrilles=0.001]
\TracerAxesGrilles[Elargir=2.5mm,Police=\small,Grille=false]%

{15,20,...,35}{auto}
\TracerHistoBinomiale%

[ClipX=15-35,Plage=18-25,CouleurPlage=teal,AffNormale,CouleurNormale=red]%
{1000}{0.02}

\end{GraphiqueTikz}

15 20 25 30 35
0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

[tkz-grapheur] - 51 -

6 Commandes spécifiques des méthodes intégrales

6.1 Méthodes géométriques

L’idée est de proposer plusieurs méthodes graphiques pour illustrer graphiquement une intégrale, via :

— une méthode des rectangles (Gauche, Droite ou Milieu) ;

— la méthode des trapèzes.

%dans l'environnement GraphiqueTikz
\RepresenterMethodeIntegrale[clés]<fonction>{a}{b}

Les Clés disponibles sont :

— Spline : booléen pour préciser qu’un spline est utilisé, false par défaut ;

— Couleur : couleur des tracés, red par défaut ;

— NbSubDiv : nombre de subdivisions, 10 par défaut ;

— Methode : méthode géométrique utilisée, parmi parmi RectanglesGauche / RectanglesDroite /
RectanglesMilieu / Trapezes pour spécifier la méthode utilisée, RectanglesGauche par défaut ;

— Remplir : booléen, true par défaut, pour remplir les éléments graphiques ;

— CouleurRemplissage : couleur de remplissage, définie par rapport à la couleur principale par
défaut ;

— Opacite : opacité, 0.25 par défaut, du remplissage.

Le deuxième argument, optionnel et entre <...>, correspond à la fonction ou le spline précédemment
définie !
Les deux derniers arguments, obligatoires, correspondent aux bornes de l’intégrale.

\begin{GraphiqueTikz}
[x=0.66cm,y=0.033cm,Xmin=0,Xmax=21,Xgrille=2,Xgrilles=1,
Ymin=0,Ymax=160,Ygrille=20,Ygrilles=10]
\TracerAxesGrilles[Elargir=2.5mm]{auto}{auto}
\DefinirCourbe[Couleur=red,Nom=cf,Debut=1,Fin=20,Trace]<f>{80*x*exp(-0.2*x)}
\RepresenterMethodeIntegrale[Couleur=teal]<f>{5}{15}

\end{GraphiqueTikz}

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

[tkz-grapheur] - 52 -

\begin{GraphiqueTikz}
[x=0.66cm,y=0.033cm,Xmin=0,Xmax=21,Xgrille=2,Xgrilles=1,
Ymin=0,Ymax=160,Ygrille=20,Ygrilles=10]
\TracerAxesGrilles[Elargir=2.5mm]{auto}{auto}
\DefinirCourbe[Couleur=red,Nom=cf,Debut=1,Fin=20,Trace]<f>{80*x*exp(-0.2*x)}
\RepresenterMethodeIntegrale

[Methode=RectanglesDroite,Couleur=orange,NbSubDiv=7]<f>{1}{10}
\end{GraphiqueTikz}

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

\begin{GraphiqueTikz}
[x=0.66cm,y=0.033cm,Xmin=0,Xmax=21,Xgrille=2,Xgrilles=1,
Ymin=0,Ymax=160,Ygrille=20,Ygrilles=10]
\TracerAxesGrilles[Elargir=2.5mm]{auto}{auto}
\DefinirCourbe[Couleur=red,Nom=cf,Debut=1,Fin=20,Trace]<f>{80*x*exp(-0.2*x)}
\RepresenterMethodeIntegrale
[Methode=RectanglesMilieu,Couleur=yellow,NbSubDiv=25]<f>{1}{20}

\end{GraphiqueTikz}

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

[tkz-grapheur] - 53 -

\begin{GraphiqueTikz}
[x=0.66cm,y=0.033cm,Xmin=0,Xmax=21,Xgrille=2,Xgrilles=1,
Ymin=0,Ymax=160,Ygrille=20,Ygrilles=10]
\TracerAxesGrilles[Elargir=2.5mm]{auto}{auto}
\DefinirCourbe[Couleur=red,Nom=cf,Debut=1,Fin=20,Trace]<f>{80*x*exp(-0.2*x)}
\RepresenterMethodeIntegrale
[Methode=Trapezes,Couleur=pink,Remplir=false]<f>{1}{20}

\end{GraphiqueTikz}

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

\begin{GraphiqueTikz}%
[x=0.8cm,y=1cm,Xmin=-7,Xmax=4,Ymin=0,Ymax=5]
\TracerAxesGrilles[Elargir=2.5mm]{auto}{auto}
\DefinirListeSpline{-6.5/0/2.5§-2/4/0§3.75/0/-1}[\lstsplineB]
\DefinirCourbeSpline[Nom=splinered]{\lstsplineB}
\TracerCourbeSpline[Couleur=red]{\lstsplineB}
\RepresenterMethodeIntegrale[Methode=RectanglesMilieu,Spline,Couleur=teal]<splinered>{-5}{1.25}

\end{GraphiqueTikz}

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6.2 Méthode de Monte-Carlo

L’idée est de proposer une commande pour simuler un calcul intégral via la méthode de Monte-Carlo.
Le code se charge de simuler les tirages, et les résultats peuvent être stockés dans des macros.

%dans l'environnement GraphiqueTikz
\SimulerMonteCarlo[clés]<fonction>{nb essais}[\nbptsmcok][\nbptsmcko]

[tkz-grapheur] - 54 -

Les Clés disponibles sont :

— Couleurs : couleurs des points, blue/red par défaut ;

— BornesX : bornes horizontales pour la simulation, valant \pflxmin,\pflxmax par défaut ;

— BornesY : bornes verticales pour la simulation, valant \pflymin,\pflymax par défaut.

Le deuxième argument, optionnel et entre <...>, est la fonction précédemment définie à utiliser.
Les deux derniers arguments, optionnels et entre [...], sont les macros dans lesquelles sont stockées
les résultats de la simulation. Ces macros sont \nbptsmcok et \nbptsmcko par défaut.
À noter que la macro \nbptsmc permet de récupérer le nombre de points utilisés.

%avec \sisetup{group-minimum-digits=4} pour le formatage des "milliers"

\begin{GraphiqueTikz}%
[x=10cm,y=10cm,Xmin=0,Xmax=1,Xgrille=0.1,Xgrilles=0.05,
Ymin=0,Ymax=1,Ygrille=0.1,Ygrilles=0.05]
\TracerAxesGrilles[Elargir=2.5mm,Dernier]{auto}{auto}
\DefinirCourbe[Trace,Couleur=teal,Pas=0.001]<f>{sqrt(1-x^2)}
\SimulerMonteCarlo<f>{5000}

\end{GraphiqueTikz}

Le nombre de points bleus est de \textcolor{blue}{\num{\nbptsmcok}},
le nombre de points rouges est de \textcolor{red}{\num{\nbptsmcko}}.

La proportion de points bleus est de $\frac{\num{\nbptsmcok}}{\num{\nbptsmc}}
\approx \ArrondirNum[4]{\nbptsmcok/\nbptsmc}$
et $\frac{\pi}{4} \approx \ArrondirNum[4]{pi/4}$.

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Le nombre de points bleus est de 3 973, le nombre de points rouges est de 1 027.
La proportion de points bleus est de 3 973

5 000 ≈ 0,794 6 et π
4 ≈ 0,785 4.

[tkz-grapheur] - 55 -

7 Commandes spécifiques des statistiques

7.1 Limitations

Compte-tenu des spécificités de TikZ, il est conseillé de ne pas utiliser de valeurs trop grandes au
niveau de axes (cela peut coincer avec des année par exemple. . .), ou bien il faudra transformer les
valeurs des axes et/ou des données pour que tout s’affiche comme il faut (attention également aux
régressions, aux calculs. . .).

7.2 Courbe des ECC/FCC (1 variable)

Il est possible de travailler sur une représentation de la courbe des ECC/FCC.

\TracerCourbeECC[clés]{liste valeurs}{liste effectifs}

Le code se charge de déterminer une valeur des paramètres, pour utilisation ultérieure (avec arrondis
éventuels car ils sont obtenus par conversions) :

— le premier quartile, Q1, est stocké dans la macro \ValPremQuartile ;

— la médiane, méd, est stocké dans la macro \ValMed ;

— le troisième quartile, Q3, est stocké dans la macro \ValTroisQuartile.

Les Clés disponibles sont :

— Couleur=... : couleur du tracé, black par défaut ;

— AffParams : booléen, true par défaut, pour afficher les paramètres ;

— CouleursParams=... : couleur des paramètres, black par défaut ;

— TraitsComplets : booléen, true par défaut, pour afficher les pointillés en entier

[tkz-grapheur] - 56 -

\begin{GraphiqueTikz}[x=0.15cm,y=0.03cm,Xmin=0,Xmax=75,Xgrille=10,Xgrilles=5,
Ymin=0,Ymax=200,Ygrille=20,Ygrilles=10]
\TracerAxesGrilles[Elargir=2.5mm,Police=\small]{auto}{auto}
\TracerCourbeECC%

[Couleur=blue,CouleursParams={lime!75!black/pink!75!black},
TraitsComplets=false]%
{0,15,25,35,40,45,55,65,75}%
{15,20,50,30,35,25,15,10}

%ajouts 'manuels'
\PlacerTexte[Couleur=lime!75!black,Police=\small,Position=below]%

{(\ValPremQuartile,0)}{\ArrondirNum[0]{\ValPremQuartile}}
\PlacerTexte[Couleur=lime!75!black,Police=\small,Position=below]%

{(\ValTroisQuartile,0)}{\ArrondirNum[0]{\ValTroisQuartile}}
\PlacerTexte[Couleur=pink!75!black,Police=\small,Position=below]%

{(\ValMed,0)}{\ArrondirNum[0]{\ValMed}}
\end{GraphiqueTikz}

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

140

160

180

200

28 4538

7.3 Le nuage de points (2 variables)

En marge des commandes liées aux fonctions, il est également possible de représenter des séries statis-
tiques doubles.
Le paragraphe suivant montre que l’ajout d’une clé permet de rajouter la droite d’ajustement linéaire.

%dans l'environnement GraphiqueTikz
\TracerNuage[clés]{ListeX}{ListeY}

La [clé] optionnelle est :

— CouleurNuage : couleur des points du nuage (black par défaut).

Les arguments, obligatoires, permettent de spécifier :

— la liste des abscisses ;

— la liste des ordonnées.

[tkz-grapheur] - 57 -

\begin{GraphiqueTikz}%
[x=0.075cm,y=0.03cm,Xmin=0,Xmax=160,Xgrille=20,Xgrilles=10,
Origy=250,Ymin=250,Ymax=400,Ygrille=25,Ygrilles=5]
%préparation de la fenêtre
\TracerAxesGrilles[Elargir=2.5mm,Police=\small]{0,10,...,160}{250,275,...,400}
%nuage de points
\TracerNuage[Style=x,CouleurNuage=red]{0,50,100,140}{275,290,315,350}

\end{GraphiqueTikz}

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
250

275

300

325

350

375

400

7.4 La droite de régression (2 variables)

La droite de régression linéaire (obtenue par la méthode des moindres carrés) peut facilement être
rajoutée, en utilisant la clé TracerDroite.
Dans ce cas, de nouvelles clés sont disponibles :

— CouleurDroite : couleur de la droite (black par défaut) ;

— Arrondis : précision des coefficients (vide par défaut) ;

— Debut : abscisse initiale du tracé (\pflxmin par défaut) ;

— Fin : abscisse terminale du tracé (\pflxmax par défaut) ;

— Nom : nom du tracé, pour exploitation ultérieure (reglin par défaut).

[tkz-grapheur] - 58 -

\begin{GraphiqueTikz}%
[x=0.075cm,y=0.03cm,Xmin=0,Xmax=160,Xgrille=20,Xgrilles=10,
Origy=250,Ymin=250,Ymax=400,Ygrille=25,Ygrilles=5]
\TracerAxesGrilles[Elargir=2.5mm,Police=\small]{0,10,...,160}{250,275,...,400}
%nuage et droite
\TracerNuage%

[CouleurNuage=red,CouleurDroite=brown,TracerDroite]%
{0,50,100,140}{275,290,315,350}

%image
\PlacerImages[Couleurs=cyan/magenta,Traits]{d}{120}
%antécédents
\PlacerAntecedents[Style=x,Couleurs=blue/green!50!black,Traits]{reglin}{300}

\end{GraphiqueTikz}

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
250

275

300

325

350

375

400

7.5 Autres régressions (2 variables)

En partenariat avec le package xint-regression, chargé par le package (mais désactivable via l’option
[nonxintreg]), il est possible de travailler sur d’autres types de régression :

— linéaire ax+ b ;

— quadratique ax2 + bx+ c ;

— cubique ax3 + bx2 + cx+ d ;

— puissance axb ;

— exponentielle abx ou eax+b ou beax ou C + beax ;

— logarithmique a+ b ln(x) ;

— hyperbolique a+
b

x
.

La commande, similaire à celle de définition d’une courbe, est :

\TracerAjustement[clés]<non fct>{type}<arrondis>{listex}{listey}

Les [clés] disponibles sont, de manière classique :

— Debut : borne inférieure de l’ensemble de définition (\pflxmin par défaut) ;
— Fin : borne inférieure de l’ensemble de définition (\pflxmax par défaut) ;
— Nom : nom de la courbe (important pour la suite !) ;
— Couleur : couleur du tracé (black par défaut) ;
— Pas : pas du tracé (il est déterminé automatiquement au départ mais peut être modifié).

[tkz-grapheur] - 59 -

Le deuxième argument, optionnel et entre <...> permet de nommer la fonction de régression.
Le troisième argument, obligatoire et entre {...} permet de choisir le type de régression, parmi :

— lin : linéaire ax+ b ;

— quad : quadratique ax2 + bx+ c ;

— cub : cubique ax3 + bx2 + cx+ d ;

— pow : puissance axb ;

— expab : exponentielle abx

— hyp : hyperbolique a+
b

x
;

— log : logarithmique a+ b ln(x) ;

— exp : exponentielle eax+b ;

— expalt : exponentielle beax ;

— expoff=C : exponentielle C + beax .

Le quatrième argument, optionnel et entre <...> permet de spécifier le ou les arrondis pour les coeffi-
cients de la fonction de régression.
Les deux derniers arguments sont les listes des valeurs de X et de Y.

[tkz-grapheur] - 60 -

\def\LISTEXX{0,50,100,140}\def\LISTEYY{275,290,315,350}%
ListeX := \LISTEXX\\
ListeY := \LISTEYY

\begin{GraphiqueTikz}
[x=0.05cm,y=0.04cm,Xmin=0,Xmax=160,Xgrille=20,Xgrilles=10,
Origy=250,Ymin=250,Ymax=400,Ygrille=25,Ygrilles=5]
%préparation de la fenêtre
\TracerAxesGrilles[Elargir=2.5mm,Police=\footnotesize]{auto}{auto}
%nuage de points
\TracerNuage[Style=o,CouleurNuage=red]{\LISTEXX}{\LISTEYY}
%ajustement expoffset
\TracerAjustement[Couleur=blue,Nom=ajust]<ajust>{expoff=250}{\LISTEXX}{\LISTEYY}
%exploitations
\PlacerImages[Couleurs=cyan/magenta,Traits]{ajust}{80}
\PlacerAntecedents[Style=x,Couleurs=blue/green!50!black,Traits]{ajust}{325}

\end{GraphiqueTikz}

\xintexpoffreg[offset=250,round=3/1]{\LISTEXX}{\LISTEYY}%
On obtient $y=250+\num{\expregoffb}\text{e}^{\num{\expregoffa}x}$

ListeX := 0,50,100,140
ListeY := 275,290,315,350

0 20 40 60 80 100 120 140 160
250

275

300

325

350

375

400

On obtient y = 250 + 24,7e0,01x

[tkz-grapheur] - 61 -

8 Codes source des exemples de la page d’accueil

\begin{GraphiqueTikz}[x=0.85cm,y=0.35cm,Xmin=0,Xmax=10,Ymin=0,Ymax=16]
%préparation de la fenêtre
\TracerAxesGrilles[Derriere,Elargir=2.5mm,Police=\small]{0,1,...,10}{0,2,...,16}
%déf des fonctions avec nom courbe + nom fonction + expression (tracés à la fin !)
\DefinirCourbe[Nom=cf]<f>{3*x-6}
\DefinirCourbe[Nom=cg]<g>{-(x-6)^2+12}
%antécédents et intersection
\TrouverIntersections[Aff=false,Nom=K]{cf}{cg}
\TrouverAntecedents[AffDroite,Couleur=orange,Nom=I]{cg}{8}
\TrouverAntecedents[Aff=false,Nom=J]{cg}{0}
%intégrale sous une courbe, avec intersection
\TracerIntegrale%

[Couleurs=blue/purple,Bornes=noeuds,Style=hachures,Hachures=bricks]%
{g(x)}%
{(I-2)}{(J-2)}

%intégrale entre les deux courbes
\TracerIntegrale[Bornes=noeuds,Type=fct/fct]%

{f(x)}[g(x)]%
{(K-1)}{(K-2)}

%tracé des courbes et des points
\TracerCourbe[Couleur=red]{f(x)}
\TracerCourbe[Couleur=teal]{g(x)}
\PlacerPoints<\small>{(K-1)/below right/L,(K-2)/above left/M}%
\PlacerPoints[violet]<\small>{(I-1)/above left/D,(I-2)/above right/E}%
%tangente
\TracerTangente[Couleurs=pink!75!black/yellow,kl=2,kr=2,AffPoint]{g}{5}
%images
\PlacerImages[Couleurs=cyan]{g}{7,7.25,7.5}
%surimpression des axes
\TracerAxesGrilles[Devant,Elargir=2.5mm]{0,1,...,10}{0,2,...,16}

\end{GraphiqueTikz}

L

M

D E

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

[tkz-grapheur] - 62 -

\begin{GraphiqueTikz}%
[x=3.5cm,y=4cm,
Xmin=0,Xmax=3.5,Xgrille=pi/12,Xgrilles=pi/24,
Ymin=-1.05,Ymax=1.05,Ygrille=0.2,Ygrilles=0.05]
%préparation de la fenêtre
\TracerAxesGrilles[Derriere,Elargir=2.5mm,Format=ntrig/nsqrt]{}{}
%rajouter des valeurs
\RajouterValeursAxeX{0.25,1.4,3.3}{\num{0.25},\num{1.4},\num{3.3}}
%fonction trigo (déf + tracé)
\DefinirCourbe[Nom=ccos,Debut=0,Fin=pi]<fcos>{cos(x)}
\DefinirCourbe[Nom=csin,Debut=0,Fin=pi]<fsin>{sin(x)}
%intégrale
\TrouverIntersections[Aff=false,Nom=JKL]{ccos}{csin}
\TracerIntegrale%

[Bornes=noeud/abs,Type=fct/fct,Couleurs=cyan/cyan!50]%
{fsin(x)}[fcos(x)]%
{(JKL-1)}{pi}

%tracé des courbes
\TracerCourbe[Couleur=red,Debut=0,Fin=pi]{fcos(x)}
\TracerCourbe[Couleur=olive,Debut=0,Fin=pi]{fsin(x)}
%antécédent(s)
\PlacerAntecedents[Couleurs=blue/teal!50!black,Traits]{ccos}{-0.25}
\PlacerAntecedents[Couleurs=red/magenta!50!black,Traits]{csin}{0.5}
\PlacerAntecedents[Couleurs=orange/orange!50!black,Traits]{csin}{sqrt(2)/2}
\PlacerAntecedents[Couleurs=green!50!black/green,Traits]{csin}{sqrt(3)/2}
%surimpression axes
\TracerAxesGrilles[Devant,Format=ntrig/nsqrt]%

{pi/6,pi/4,pi/3,pi/2,2*pi/3,3*pi/4,5*pi/6,pi}
{0,sqrt(2)/2,1/2,sqrt(3)/2,1,-1,-sqrt(3)/2,-1/2,-sqrt(2)/2}

\end{GraphiqueTikz}

0,25 1,4 3,3π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π
0

√
2/2

1/2

√
3/2

1

−1
−
√
3/2

−1/2

−
√
2/2

[tkz-grapheur] - 63 -

9 Commandes auxiliaires

9.1 Intro

En marge des commandes purement graphiques, quelques commandes auxiliaires sont disponibles :

— une pour formater un nombre avec une précision donnée ;

— une pour travailler sur des nombres aléatoires, avec contraintes.

9.2 Arrondi formaté

La commande \ArrondirNum permet de formater, grâce au package siunitx, un nombre (ou un cal-
cul), avec une précision donnée. Cela peut être utile pour formater des résultats obtenus grâce aux
commandes de récupération des coordonnées, par exemple.

\ArrondirNum[précision]{calcul xint}

\ArrondirNum{1/3}\\
\ArrondirNum{16.1}\\
\ArrondirNum[3]{log(10)}\\

0,33
16,1
2,303

9.3 Nombre aléatoire sous contraintes

L’idée de cette deuxième commande est de pouvoir déterminer un nombre aléatoire :

— entier ou décimal ;

— sous contraintes (entre deux valeurs fixées).

Cela peut permettre, par exemple, de travailler sur des courbes avec points aléatoires, mais respectant
certaines contraintes.

\ChoisirNbAlea(*)[precision (déf 0)]{borne inf}{borne sup}[\macro]

La version étoilée prend les contraintes sous forme stricte (borne inf < macro < borne sup) alors que
la version normale prend les contraintes sous forme large (borne inf ⩽ macro ⩽ borne sup).
À noter que les bornes peuvent être des macros existantes !

%un nombre (2 chiffres après la virgule) entre 0.75 et 0.95
%un nombre (2 chiffres après la virgule) entre 0.05 et 0.25
%un nombre (2 chiffres après la virgule) entre 0.55 et \YrandMax
%un nombre (2 chiffres après la virgule) entre \YrandMin et 0.45
\ChoisirNbAlea[2]{0.75}{0.95}[\YrandMax]%
\ChoisirNbAlea[2]{0.05}{0.25}[\YrandMin]%
\ChoisirNbAlea*[2]{0.55}{\YrandMax}[\YrandA]%
\ChoisirNbAlea*[2]{\YrandMin}{0.45}[\YrandB]%
%vérification
\num{\YrandMax} \& \num{\YrandMin} \& \num{\YrandA} \& \num{\YrandB}

0,75 & 0,15 & 0,6 & 0,3

[tkz-grapheur] - 64 -

%un nombre (2 chiffres après la virgule) entre 0.75 et 0.95
%un nombre (2 chiffres après la virgule) entre 0.05 et 0.25
%un nombre (2 chiffres après la virgule) entre 0.55 et \YrandMax
%un nombre (2 chiffres après la virgule) entre \YrandMin et 0.45
\ChoisirNbAlea[2]{0.75}{0.95}[\YrandMax]%
\ChoisirNbAlea[2]{0.05}{0.25}[\YrandMin]%
\ChoisirNbAlea*[2]{0.55}{\YrandMax}[\YrandA]%
\ChoisirNbAlea*[2]{\YrandMin}{0.45}[\YrandB]%
%vérification
\num{\YrandMax} \& \num{\YrandMin} \& \num{\YrandA} \& \num{\YrandB}

0,95 & 0,18 & 0,71 & 0,24

[tkz-grapheur] - 65 -

%la courbe est prévue pour qu'il y ait 3 antécédents
\ChoisirNbAlea[2]{0.75}{0.95}[\YrandMax]%
\ChoisirNbAlea[2]{0.05}{0.25}[\YrandMin]%
\ChoisirNbAlea*[2]{0.55}{\YrandMax}[\YrandA]%
\ChoisirNbAlea*[2]{\YrandMin}{0.45}[\YrandB]%

\begin{GraphiqueTikz}
[x=0.075cm,y=7.5cm,Xmin=0,Xmax=150,Xgrille=10,Xgrilles=5,
Ymin=0,Ymax=1,Ygrille=0.1,Ygrilles=0.05]
\TracerAxesGrilles[Dernier,Elargir=2.5mm]{auto}{auto}
\DefinirCourbeInterpo[Couleur=red,Trace,Nom=fonctiontest,Tension=0.75]
{(0,\YrandA)(40,\YrandMin)(90,\YrandMax)(140,\YrandB)}
\TrouverAntecedents[Aff=false,Nom=ANTECED]{fonctiontest}{0.5}
\PlacerAntecedents[Couleurs=blue/teal,Traits]{fonctiontest}{0.5}
\RecupererAbscisse{(ANTECED-1)}[\Aalpha]
\RecupererAbscisse{(ANTECED-2)}[\Bbeta]
\RecupererAbscisse{(ANTECED-3)}[\Cgamma]

\end{GraphiqueTikz}

Les solutions de $f(x)=\num{0.5}$ sont, par lecture graphique :
$\begin{cases}

\alpha \approx \ArrondirNum[0]{\Aalpha} \\
\beta \approx \ArrondirNum[0]{\Bbeta} \\
\gamma \approx \ArrondirNum[0]{\Cgamma}

\end{cases}$.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Les solutions de f(x) = 0,5 sont, par lecture graphique :


α ≈ 7

β ≈ 65

γ ≈ 134

.

[tkz-grapheur] - 66 -

10 Liste des commandes

Les commandes disponibles sont :

environnement : \begin{GraphiqueTikz}...\end{GraphiqueTikz} page 8
axes et grilles : \TracerAxesGrille page 11
aj val axes X : \RajouterValeursAxeX page 15
aj val axes Y : \RajouterValeursAxeY page 15
def fonction : \DefinirCourbe page 18
tracé courbe : \TracerCourbe page 18
def interpo : \DefinirCourbeInterpo page 19
tracé interpo : \TracerCourbeInterpo page 19
interp Lagrange : \GenererPolynomeLagrange page 21
def spline : \DefinirCourbeSpline page 20
tracé spline : \TracerCourbeSpline page 20
tracé droite : \TracerDroite page 17
asymptote vert : \TracerAsymptote page 17
def points : \DefinirPts page 24
def image : \DefinirImage page 24
marq pts : \MarquerPts page 26
placer txt : \PlacerTexte page 28
pts discont : \AfficherPtsDiscont page 27
récup absc : \RecupererAbscisse page 28
récup ordo : \RecupererOrdonnee page 28
récup coordos : \RecupererCoordonnees page 28
images : \PlacerImages page 30
antécédents : \TrouverAntecedents page 31
antécédents : \PlacerAntecedents page 32
intersection : \TrouverIntersections page 33
maximum : \TrouverMaximum page 34
minimum : \TrouverMinimum page 34
intégrale : \TracerIntegrale page 38
méthodes int : \RepresenterMethodeIntegrale page 52
Monte-Carlo : \SimulerMonteCarlo page 54
tangente : \TracerTangente page 42
toile récurr : \TracerToileRecurrence page 44
inég. linéaire : \InegaliteLineaire page 46
loi normale : \DefinirLoiNormale page 48
loi normale : \TracerLoiNormale page 48
loi khideux : \DefinirLoiKhiDeux page 49
loi khideux : \TracerLoiKhiDeux page 49
loi binom : \TracerHistoBinomiale page 49
courbe ECC : \TracerCourbeECC page 56
stats 2 var : \TracerNuage page 57
regressions : \TracerAjustement page 59
arrondi : \ArrondirNum page 64
nb aléat : \ChoisirNbAlea page 64

[tkz-grapheur] - 67 -

11 Quelques commandes liées à pgfplots

11.1 Introduction

Pour des graphiques avec des fenêtres d’affichage particulières, il est fort possible que les commandes
classiques de tkz-grapheur coincent, avec notamment des dimension too large. . .

Dans ce cas, il est possible d’utiliser plutôt l’environnement axis de pgfplots, qui, de plus, permet
souvent de pallier ce problème interne. . .
tkz-grapheur ne fournit pas d’environnement dédié pour la création de la fenêtre, mais quelques
commandes spécifiques ont été intégrées pour certains points, avec un fonctionnement assez semblable
(donc se référer aux paragraphes précédents) à celui des commandes classiques.

11.2 Macros spécifique pgfplots/axis

%déterminer l'intersection de deux objets préalablement définis via [name path]
\findintersectionspgf[base nom nœuds]{objet1}{objet2}[macro nb total]

%extraction (globale, non limitée à l'environnement) et stockage de coordonnées
\gextractxnodepgf{nœud}[\myxcoord]
\gextractynodepgf{nœud}[\myycoord]
\gextractxynodepgf{nœud}[\myxcoord][\myycoord]

%domaine entre courbes
\fillbetweencurvespgf[options tikz]{courbe1}{courbe2}<options soft domain>

%splines cubiques
\addplotspline(*)[options tikz]<coeffs>{liste des points support}[\monspline]

[tkz-grapheur] - 68 -

11.3 Exemple illustré

%\usepackage{alphalph}

\begin{tikzpicture}
\begin{axis}%

[%
axis y line=center,axis x line=middle, %axes
axis line style={line width=0.8pt,-latex},
x=0.33cm,y=0.55cm,xmin=1985,xmax=2030,ymin=56,ymax=70, %unités
grid=both,xtick distance=5,ytick distance=2, %grillep
minor x tick num=4,minor y tick num=1, %grilles
extra x ticks={1985},extra x tick style={grid=none}, %origx
extra y ticks={56},extra y tick style={grid=none}, %origy
x tick label style={/pgf/number format/.cd,use comma,1000 sep={}}, %année
major tick length={2*3pt},minor tick length={1.5*3pt}, %grads
every tick/.style={line width=0.8pt},enlargelimits=false, %style
enlarge x limits={abs=2.5mm,upper},enlarge y limits={abs=2.5mm,upper}, %élargir
]
%spline + y=66
\addplot[name path global=eqtest,mark=none,red,line width=1.05pt,domain=1985:2030]

{66} ;↪→

\def\LISTETEST{1985/60/0§1995/68/0§2015/58/0§2025/69/0§2030/62/-2}
\addplotspline*[line width=1.05pt,violet,name path

global=splinecubtest]{\LISTETEST}[\monsplineviolet]↪→

%recherche d'antécédents
\findintersectionspgf[MonItsc]{eqtest}{splinecubtest}
%extraction des coordonnées
\gextractxnodepgf{(MonItsc-1)}[\xMonItscA]
\gextractxnodepgf{(MonItsc-2)}[\xMonItscB]
\gextractxnodepgf{(MonItsc-3)}[\xMonItscC]
\gextractxnodepgf{(MonItsc-4)}[\xMonItscD]
%visualisation
\xintFor* #1 in {\xintSeq{1}{4}}\do{%

\draw[line width=0.9pt,densely dashed,olive,->,>=latex] (MonItsc-#1) -- (\csname
xMonItsc\AlphAlph{#1}\endcsname,56) ;↪→

\filldraw[olive] (MonItsc-#1) circle[radius=1.75pt] ;
}
%intégrale
\path [name path=xaxis] (1985,56) -- (2030,56);
\fillbetweencurvespgf{splinecubtest}{xaxis}<domain={\xMonItscB:\xMonItscA}>
\fillbetweencurvespgf{splinecubtest}{xaxis}<domain={\xMonItscD:\xMonItscC}>

\end{axis}
\end{tikzpicture}

Les solutions de $f(x)=66$ sont d'environ \ArrondirNum*[0]{\xMonItscA} \&\
\ArrondirNum*[0]{\xMonItscB} \&\ \ArrondirNum*[0]{\xMonItscC} \&\
\ArrondirNum*[0]{\xMonItscD}.

↪→

↪→

[tkz-grapheur] - 69 -

1990 1995 2000 2005 2010 2015 2020 2025 2030

58

60

62

64

66

68

70

1985
56

Les solutions de f(x) = 66 sont d’environ 1992 & 2001 & 2022 & 2028.

[tkz-grapheur] - 70 -

12 Historique
0.30a : Création des nœuds (fenêtre + axes)
0.2.9 : Ajout de thèmes de couleurs pour les grilles
0.2.7 : Possibilité de spécifier les dimensions du graphique (en test)
0.2.6 : Inegalité linéaire (en test)
0.2.5 : Interpolation de Lagrange + améliorations
0.2.4 : Clé [StyleTrace] pour des pointillés par exemple
0.2.3 : Bugfix avec une longueur
0.2.0 : Méthode alternative des splines cubiques + commandes auxiliaires pgfplots
0.1.9 : Correction d'un bug avec la détermination d'unités
0.1.8 : Courbes ECC/FCC + Toile récurrence + Points discontinuité + HistoBinom
0.1.7 : Méthodes intégrales avec des splines
0.1.6 : Asymptote verticale + Méthodes intégrales (géom + Monte Carlo)
0.1.5 : Correction d'un bug sur les rajouts de valeurs + Nœud pour une image + [en] version !
0.1.4 : Placement de texte
0.1.3 : Ajout de régressions avec le package xint-regression
0.1.2 : Droites + Extremums
0.1.1 : Densité loi normale et khi deux + Marquage points + Améliorations
0.1.0 : Version initiale

[tkz-grapheur] - 71 -

	Table des matières
	1 Introduction
	1.1 Description et idées générales
	1.2 Fonctionnement global
	1.3 Packages utilisés, et options du package
	1.4 Chargement du package
	1.5 Avertissements
	1.6 Exemple introductif

	2 Styles de base et création de l'environnement
	2.1 Styles de base
	2.2 Création de l'environnement
	2.2.1 Valeurs manuelles
	2.2.2 Avec choix des dimensions

	2.3 Grilles et axes
	2.3.1 Fonctionnement global
	2.3.2 Thème de couleurs de la grille

	2.4 Ajout de valeurs manuellement
	2.5 Nœuds liés à la fenêtre et aux axes

	3 Commandes spécifiques de définitions
	3.1 Tracer une droite
	3.2 Définir une fonction, tracer la courbe d'une fonction
	3.3 Définir/tracer une courbe d'interpolation (simple)
	3.4 Définir/tracer une courbe d'interpolation (Hermite)
	3.5 Définir/tracer une courbe d'interpolation (Lagrange)
	3.6 Définir des points sous forme de nœuds
	3.7 Marquage de points
	3.8 Marquer des points de discontinuité
	3.9 Récupérer les coordonnées de nœuds
	3.10 Placer du texte

	4 Commandes spécifiques d'exploitation des courbes
	4.1 Placement d'images
	4.2 Détermination d'antécédents
	4.3 Construction d'antécédents
	4.4 Intersections de deux courbes
	4.5 Extremums
	4.6 Intégrales (version améliorée)
	4.7 Tangentes
	4.8 Suites récurrentes et toiles
	4.9 Inégalité linéaire

	5 Commandes spécifiques des fonctions de densité
	5.1 Loi normale
	5.2 Loi du khi deux
	5.3 Histogramme pour une loi binomiale

	6 Commandes spécifiques des méthodes intégrales
	6.1 Méthodes géométriques
	6.2 Méthode de Monte-Carlo

	7 Commandes spécifiques des statistiques
	7.1 Limitations
	7.2 Courbe des ECC/FCC (1 variable)
	7.3 Le nuage de points (2 variables)
	7.4 La droite de régression (2 variables)
	7.5 Autres régressions (2 variables)

	8 Codes source des exemples de la page d'accueil
	9 Commandes auxiliaires
	9.1 Intro
	9.2 Arrondi formaté
	9.3 Nombre aléatoire sous contraintes

	10 Liste des commandes
	11 Quelques commandes liées à pgfplots
	11.1 Introduction
	11.2 Macros spécifique pgfplots/axis
	11.3 Exemple illustré

	12 Historique

