User guide

Version 26.3
2026/02/14

Javier Bezos
Current maintainer

Johannes L. Braams
Original author

Babel

Localization and
internationalization

Unicode
TEX
LuaTgX
PdfTEX
XeTEX

Contents

1

The basic user interface

1.1 Monolingual documents: the ‘classical’ way
1.2 Monolingual documents: the ‘modern’ way
1.3 Mostly monolingual documents: lazy loading
1.4 Multilingual documents: the ‘classical’ way
1.5 Multilingual documents: the ‘modern’way

1.6 Languages supported by babel in the ‘classical’ mode
1.7 Languages supported by babel in the ‘modern’ mode

1.8 Fontsin Unicodeengines
1.9 Basiclanguageselectors
1.10 Auxiliary language selectors
111 Plain

More on language loading and selection

21 Afewtoolso
2.2 Accessinglanguageinfo
2.3 Packageoptions
24 Thebaseoption
2.5 provide and \babelprovide—-inifiles.
2.6 Selection based on BCP47tags
Tailoring, customizing and modifying a language

3.1 Captions e e
32 Modifierso
3.3 Languageattributes
34 Casing . . . v v vt e e e
3.5 Modifying and adding values to ini files
36 HOOKS e
3.7 Manage auxiliaryfiles
3.8 Codebasedontheselector
39 Presets e

Creating a language

Locale features

5.1 Hyphenation and line breaking — 1. Commands . . .
5.2 Hyphenation and line breaking — 2. ‘Provide’ options
5.3 Shorthands-1.Commands.
5.4 Shorthands - 2. Package options
5.5 Digitsandcounters
56 Dates
57 Transforms.
5.8 Support for xetex interchar.
59 Scripts
5.10 Bidirectional and right-to-lefttext
5.11 Unicode character properties in luatex
5.12 Tweaking some babel features

Relation with other packages

6.1 Compatibility
6.2 Relatedpackages
6.3 Indexing,

Tentative and experimental code

Loading language hyphenation rules with language.dat
81 Format,

© 00O Www

10

16
19
20
22

22
22
24
25
27
27
28

29
29
31
31
31
32
33
34
34
35

35

39
39
42
42
46
46
48
49
54
55
56
60
61

61
61
62
62

62

63
63

9 The interface between the core of babel and the language definition files
9.1 Guidelines for contributed languages
9.2 BaSICIMACIOS v v v v o ettt e e e e e e e e e e e e e
9.3 Skeleton
9.4 Support for active characters o o ...
9.5 Support for saving macro definitions L.,
9.6 Support for extending Macros
9.7 Macros common to a number of languages
9.8 Encoding-dependentstrings,

10 Acknowledgements

Troubleshoooting

Package inputenc Error: Invalid UTF-8byte...
Unknown language ’LANG” it
No hyphenation patterns were preloaded for (babel) the language 'LANG’ into
theformat
You are loading directly a languagestyle
Package fontspec Info: Language ’<lang>’ not explicitly supported within font
’ with script’<script>.
Package babel Info: The following fonts are not babel standard families
Argument of \language@active@arg” hasanextra}

63
64
65
66
67
67
68
68
68

71

What is this document about? This user guide focuses on internationalization and
localization with EIgX and luatex, pdftex and xetex with the babel package. There are
also some notes on its use with e-Plain and pdf-Plain TgX.

I only need learn the most basic features. The first subsections (1.1-1.6) describe the
ways of loading a language, which is usually all you need.

I don’t like manuals. I prefer sample files. This manual contains lots of examples and
tips, but in GitHub there are many sample files.

What if I'm interested only in the latest changes? Changes and new features with
relation to version 3.8 are highlighted with xxx (x is a link to the babel site), and there
are some notes for the latest versions in the babel site. The most recent features can still
be unstable. Remember version 24.1 follows 3.99, because of a new numbering scheme.

Can I help? Sure! You can follow the development of babel in GitHub and make
suggestions, including requirements for some language or script. Feel free to fork it and
make pull requests. If you are the author of a package, send me a few test files which I'll
add to mine, so that possible issues can be caught in the development phase.

It doesn’t work for me! You can ask for help in some forums like tex.stackexchange, but if
you have found a bug, I strongly beg you to report it in GitHub, which is much better
than just complaining on an e-mail list or a web forum. Remember warnings are not
errors by themselves, they just warn about possible problems or incompatibilities.
Hyphenation rules are maintained separately here.

How can I contribute a new language? See section 9.1 for contributing a language.

Where is the code? Run
lualatex --jobname=babel-code \let\babelcode\relax\input{babel.dtx}.

NOTE Now that the recommend engine for KTgX is luatex, you can read Migrating from
pdfTeX to LuaTeX and Migrating from XeTeX to LuaTeX.

1. The basic user interface

There are two ways to load a language with babel, namely, the old good ‘classical’ one,
based on mostly self-contained declarations in a file with 1df extension, and the ‘modern’
one, based on a brand new mechanism based on descriptive ini files.

‘Classical’ doesn’t mean outdated or obsolete. In fact, this is the recommended method in
most languages where an 1df file exists. Below is a list of the supported languages. See also
Which method for which language in the babel site.

Basically, what you need is typically:

 Tell babel which language or languages are required.

* With non-Latin scripts and Unicode engines (luatex is the preferred one), select a
suitable font (sec. 1.8)

* In multilingual documents, switch the language in the text body (sec. 1.9).

You can find basic info and minimal luatex example files for about 300 locales in the
GitHub repository. There are also some videos on Youtube.

1.1. Monolingual documents: the ‘classical’ way

In most cases, a single language is required, and then all you need in KIgX is to load the
package using its standard mechanism for this purpose, namely, passing that language as
an optional argument. In addition, you may want to set the font and input encodings.
Another approach is making the language a global option in order to let other packages
detect and use it. This is the standard way in KIgX for an option - in this case a language —

https://github.com/latex3/babel/tree/master/samples
https://latex3.github.io/babel/
https://github.com/latex3/babel
https://github.com/latex3/babel/issues
https://github.com/hyphenation/tex-hyphen
https://latex3.github.io/babel/guides/migrating-pdftex-luatex.html
https://latex3.github.io/babel/guides/migrating-pdftex-luatex.html
https://latex3.github.io/babel/guides/migrating-xetex-luatex.html
https://latex3.github.io/babel/guides/which-method-for-which-language.html
https://latex3.github.io/babel/guides/index-locale.html
https://www.youtube.com/playlist?list=PLVc2cHCI6zpJcaa1x-yK9iRjqtE3Ct2Ja

to be recognized by several packages (in other words, babel doesn’t set the languages, it
just recognizes the options passed to the class or the package).

Many languages are compatible with luatex and xetex, but a few only work with pdftex.
When these engines are used, the Latin script is covered by default in current ETgX
(provided the document encoding is UTF-8). Other scripts require loading fontspec,
although babel provides a higher level interface (see \babelfont below).

258% The PDF document language can also be set with \DocumentMetadata before
\documentclass. See the liked news page for further info. For example, the following
setting will pass british as the main language to babel:

\DocumentMetadata{lang=en-GB}
\documentclass{article}
\usepackage{babel}

The basic tag lookup explained below is applied here, so that fr-Latn-FRis valid and
mapped to fr, which is in turn mapped to french. This eases the localization of
automatically generated documents.

WARNING This is a breaking change, because until now with this example the dummy
language nil was loaded. Tags are not validated, which means mistakes like en-UK or
wrong tags like de-AUS or la-x-classical might be accepted without complaining.

EXAMPLE Here is a simple full example for “traditional” TgX engines (see below for luatex
and xetex). The package fontenc does not belong to babel, but it is included in the
example because typically you will need it. It assumes UTF-8, the default encoding:

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage[french]{babel}
\begin{document}

Plus ca change, plus c'est la méme chose!

\end{document}

Now consider something like:

\documentclass[french]{article}
\usepackage{babel}
\usepackage{varioref}

With this setting, the package varioref will also see the option french and will be able
to use it.

EXAMPLE Now a simple monolingual document in Russian (text from the Wikipedia) with
luatex or xetex. Note neither fontenc nor inputenc is necessary, and a so-called Unicode
font must be loaded (in this example with the help of \babelfont, described below).

LUATEX/XETEX

\documentclass[russian]{article}
\usepackage{babel}
\babelfont{rm}{DejaVu Serif}

\begin{document}

https://latex3.github.io/babel/news/whats-new-in-babel-25.8.html

Poccusa, Haxopsuwascs Ha nNepeceyeHUM MHOXECTBA KyNbTyp, a Takxe

C YYETOM MHOrOHaLMOHaNbHOTr0 XapakTepa eé HacCeneHus, — oTnAuYaeTcs
BLICOKOW CTEeneHbl 3THOKYNbTYPHOr0o MHOroobpasus U CrnocobHOCTbI K
MeXKYJIbTYPHOMY [Ouanory.

\end{document}

NOTE Because of the way babel has evolved, “language” can refer to (1) a set of
hyphenation patterns as preloaded into the format, (2) a package option, (3) an 1df file,
and (4) a name used in the document to select a language. Please, read the
documentation for specific languages for further info.

NOTE Babel does not make any readjustments by default in font size, vertical positioning
or line height. This is on purpose because the optimal solution depends on the
document layout and the font, and very likely the most appropriate one is a
combination of these settings. A quick and simple solution to get a more uniform
vertical spacing is with the option 12pt in standard classes, and then reducing the font
with Scale (memoir provides also larger values, like 14pt).

NOTE Although it has been customary to recommend placing \title, \author and other
elements printed by \maketitle after \begin{document}, mainly because of
shorthands, it is advisable to keep them in the preamble. Currently there is no real need
to use shorthands in those macros (and if you need them, you can use
\babelshorthand).

NOTE With hyperref you may want to set the PDF document language with something like:

\usepackage[pdflang=es-MX]{hyperref}

This is not currently done by babel and you must set it by hand.

WARNING In the preamble, no language has been selected, except hyphenation patterns
and the name assigned to \localename (and \languagename) (in particular, shorthands,
captions and date are not activated). If you need to define boxes and the like in the
preamble, you might want to use some of the language selectors described below.

TROUBLESHOOTING Package inputenc Error: Invalid UTF-8 byte ... A common source of
trouble is a wrong setting of the input encoding. Make sure you set the encoding
actually used by your editor, or even better, make sure the encoding in your editor is set
to UTE-8.

TROUBLESHOOTING Another typical error when using babel is the following:

! Package babel Error: Unknown language 'LANG'. Either you have

(babel) misspelled its name, it has not been installed,
(babel) or you requested it in a previous run. Fix its name,
(babel) install it or just rerun the file, respectively. In
(babel) some cases, you may need to remove the aux file

The most frequent reason is, by far, the latest (for example, you included spanish, but
you realized this language is not used after all, and therefore you removed it from the
option list). In most cases, the error vanishes when the document is typeset again, but in
more severe ones you will need to remove the aux file.

TROUBLESHOOTING No hyphenation patterns were preloaded... The following warning is
about hyphenation patterns, which are not under the direct control of babel:

1.2.

Package babel Warning: No hyphenation patterns were preloaded for

(babel) the language "LANG' into the format.

(babel) Please, configure your TeX system to add them and
(babel) rebuild the format. Now I will use the patterns
(babel) preloaded for \language=0 instead on input line 57.

The document will be typeset, but very likely the text will not be correctly hyphenated.
Some languages in some system may be raising this warning wrongly (because they are
not hyphenated) - just ignore it. See the manual of your distribution (MacTgX, MikTgX,
TeXLive, etc.) for further info about how to configure it.

TROUBLESHOOTING You are loading directly a language style. Loading directly sty files in
KTEX (i.e., \usepackage{(language)}) was deprecated many years ago and you will get
the error:

! Package babel Error: You are loading directly a language style.
(babel) This syntax is deprecated and you must use
(babel) \usepackage[language]{babel}.

NOTE You will see an ‘info’ in the log file stating some data is being loaded from an ini
file. It includes standardized names for language and script used by \babelfont, and
the BCP 47 tag, required in some cases by \Make{(Xxxxx)case.

Monolingual documents: the ‘modern’ way

WARNING 2514% Languages not supported with the 1df mechanism are new loaded
without provide=*. This manual has not been fully updated yet.

When, for whatever reason, the ‘classical’ way with the 1df is not suitable for the needs
of a document or a document system, you have to resort to a different mechanism, which is
activated automatically if the language is not supported by the ‘traditional’ way or with the
package option provide=* (in monolingual documents).

EXAMPLE Although Georgian has its own 1df file, here is how to declare this language in
Unicode engines. Here, as in a previous example, we resort to \babelfont to set the
font for this language (with the Harfbuzz renderer, just to show how to set it, because
here the Node renderer should be fine).

\documentclass{book}

\usepackage[georgian, provide=*]{babel}
\babelfont{rm}[Renderer=Harfbuzz]{DejaVu Sans}

\begin{document}

\tableofcontents

\chapter{boddohgyom o Lyzhol dhopogogdo}

Johoyoo phopogoneo Loddohgyom gho-ghmo Pdpophglbod dmge dbmzgomdo.

\end{document}

And with a global option:

https://latex3.github.io/babel/news/whats-new-in-babel-25.14.html

\documentclass[georgian]{book}
\usepackage[provide=*]{babel}
\babelfont{rm}[Renderer=Harfbuzz]{DejaVu Sans}

NOTE This option actually loads the language with \babelprovide and the import option,
described below. Instead of an asterisk, you may provide a list of options for
\babelprovide enclosed in braces (import is included by default).

EXAMPLE For a text in Chinese, you can write in the preamble:

\usepackage[chinese]{babel}
\babelfont{rm}{FandolSong}
The skip between characters is 0 pt plus .1 pt, which can be modified with an option
(explained below) in provide. For example:

\usepackage[chinese, provide={ intraspace=0 .2 0 }]{babel}

WARNING Because of the way KIgX passes options, with provide there must be no space
in the middle of ={, as the previous example shows.

1.3. Mostly monolingual documents: lazy loading

339% Very often, multilingual documents consist of a main language with small pieces of
text in another languages (words, idioms, short sentences). Typically, all you need is to set
the line breaking rules and, perhaps, the font. In such a case, there is no need to clutter the
preamble (particularly the class and package options) because babel does not require
declaring these secondary languages explicitly — the basic settings are loaded on the fly
when the language is first selected.

This is particularly useful in documents with many languages, and also when there are
short texts of this kind coming from an external source whose contents are not known
beforehand (for example, titles in a bibliography). In this regard, it is worth remembering
that \babelfont does not load any font until required, so that it can be used just in case.

384% With pdftex, when a language is loaded on the fly (internally it’s loaded with
\babelprovide) selectors now set the font encoding based on the list provided when
loading fontenc. Not all scripts have an associated encoding, so this feature works only
with Latin, Cyrillic, Greek, Arabic, Hebrew, Cherokee, Armenian, and Georgian, provided a
suitable font is found.

EXAMPLE A trivial document with the default font in English and Spanish, and FreeSerif
in Russian is:

LUATEX/XETEX

\documentclass[english]{article}
\usepackage{babel}

\babelfont[russian]{rm}{FreeSerif}
\begin{document}

English. \foreignlanguage{russian}{Pycckuin}.
\foreignlanguage{spanish}{Espafiol}.

\end{document}

If you need the ‘modern’ way to load the main language set as global option, just write:

https://latex3.github.io/babel/news/whats-new-in-babel-3.39.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.84.html

\usepackage[provide=*]{babel}

NOTE Instead of its name, you may prefer to select the language with the corresponding
BCP 47 tag. This alternative, however, must be activated explicitly, because a two- or
three-letter word is a valid name for a language (e.g., Lu can be the locale name with tag
khb or the tag for lubakatanga). See section 2.6 for further details.

1.4. Multilingual documents: the ‘classical’ way

In multilingual documents, just use a list of the required languages either as package or as
class options. The last language is considered the main one, activated by default.
Sometimes, the main language changes the document layout (e.g., spanish and french).

To switch the language there are two basic macros, described below in detail:
\selectlanguage is used for blocks of text, while \foreignlanguage is for chunks of text
inside paragraphs.

EXAMPLE In KEIgX, the preamble of the document:

\documentclass{article}
\usepackage[dutch,english]{babel}

would tell ETEX that the document would be written in two languages, Dutch and
English, and that English would be the first language in use, and the main one.

EXAMPLE A full bilingual document with pdftex follows. The main language is french,
which is activated when the document begins. It assumes UTF-8:

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage[english, french]{babel}
\begin{document}

Plus ca change, plus c'est la méme chose!
\selectlanguage{english}

And an English paragraph, with a short text in
\foreignlanguage{french}{francais}.

\end{document}
EXAMPLE With luatex and xetex, the following bilingual, single script document in UTF-8

encoding just prints a couple of ‘captions’ and \today in Danish and Vietnamese. No
additional packages are required, because the default font supports both languages.

\documentclass{article}

\usepackage[vietnamese,danish]{babel}
\begin{document}
Danish: \prefacename, \alsoname, \today.

\selectlanguage{vietnamese}

Vietnamese: \prefacename, \alsoname, \today.

\end{document}

NOTE Although strongly discouraged, languages can be set as global and as package
option at the same time, but in such a case you should set explicitly the main language
with the package option main, described below:

\documentclass[italian]{book}
\usepackage[ngerman,main=italian]{babel}

NOTE Once a language is loaded, you can select it with the corresponding BCP 47 tag. See
section 2.6 for further details.

NOTE Documents with several input encodings are not frequent, but sometimes are
useful. You can set different encodings for different languages as the following example
shows (pdftex):

\addto\extrasfrench{\inputencoding{latinl}}
\addto\extrasrussian{\inputencoding{koi8-r}}

1.5. Multilingual documents: the ‘modern’ way

If lazy loading is not enough for your purposes, you can still tell which languages should be
loaded as either class or package options. You can combine the ‘classical’ and the ‘modern’

ways with three options to set which method you want, which cover the most typical cases
[to be revised; a new ‘value’ ! forces the 1df mode]:

* provide=* is the option explained above for monolingual documents. If there are more
languages, it applies only to the main language, while the rest will be loaded in the
‘classical’ way..

* provide+=*loads the main language in the ‘classical’ way, and the rest in the ‘modern’
one.

* provide*=* is the same for all languages, i.e., main and secondary ones are loaded in
the ‘modern’ way.

More complex combinations can be handled with \babelprovide, explained below.

EXAMPLE Your document is written in Thai with large chunks in Dutch and German, and
you want the 1df files in the latter because, for example, you need their shorthands.
The font is Norasi, which covers the three languages:

\usepackage[dutch,ngerman, thai]{babel}

\babelfont{rm}{Norasi}

This will load dutch and ngerman in the classical ldf mode, but thai in the modern ini
mode. Other options are:

\usepackage[dutch,ngerman, thai,provide=!]{babel}

which will use the classical mode for in languages (as described in the previous section;
provide=! forces the 1df file, but note thai.ldf is not supported in Unicode engines),
and:

\usepackage[dutch,german, thai,provide*=*]{babel}

which will use the modern mode in all languages (note the correct name here is german).

1.6. Languages supported by babel in the ‘classical’ mode

(To be updated.) In the following table most of the languages supported by babel with an
1df file are listed, together with the names of the options which you can load babel with
for each language. Note this list is open and the current options may be different. It does
not include ini files (see below).

Except in a few cases (e.g., ngerman, serbianc, acadian) names are those of the Unicode
CLDR (or based on them).

Most of them work out of the box, but some may require extra fonts, encoding files, a
preprocessor or even a complete framework (like CJK or luatexja).

This list is still under revision.

Recommended names are set in red.

Additional languages are set in gray.

Discouraged and deprecated names are not included.
There are some notes in a few languages.

The reference mark (x) is a link to CTAN.

afrikaans x

albanian x german
amharic x See the manual for the german babel style.
Calls ethiop austrian
arabic x greek x
Calls arabi. polytonicgreek
azerbaijani x Calls greek.polytonic
basque ancientgreek
belarusian x Calls greek.ancient
bosnian x ibycus
breton x bgreek
bulgarian x hebrew x
catalan x hindi x
croatian x Calls velthuis.
czech x hungarian x
danish x magyar
dutch x icelandic x
english x indonesian x
american interlingua x
USenglish irish x
australian italian x
british japanese x
UKenglish kurmanji
canadian latin x
newzealand classicallatin
esperanto x medievallatin
estonian x ecclesiasticallatin
ethiop latvian x
See amharic. lithuanian x
farsi x lowersorbian x
Calls arabi. macedonian x
finnish x malay x
french mongolian x
acadian ngerman

friulian x
galician x
georgian x

Calls geotex.

See the manual for the german babel style.
naustrian
nswissgerman

https://ctan.org/pkg/babel-dutch
https://ctan.org/pkg/babel-albanian
https://ctan.org/pkg/babel-amharic
https://ctan.org/pkg/arabi
https://ctan.org/pkg/babel-azerbaijani
https://ctan.org/pkg/babel-basque
https://ctan.org/pkg/babel-belarusian
https://ctan.org/pkg/babel-bosnian
https://ctan.org/pkg/babel-breton
https://ctan.org/pkg/babel-bulgarian
https://ctan.org/pkg/babel-catalan
https://ctan.org/pkg/babel-croatian
https://ctan.org/pkg/babel-czech
https://ctan.org/pkg/babel-danish
https://ctan.org/pkg/babel-dutch
https://ctan.org/pkg/babel-english
https://ctan.org/pkg/babel-esperanto
https://ctan.org/pkg/babel-estonian
https://ctan.org/pkg/arabi
https://ctan.org/pkg/babel-finnish
https://ctan.org/pkg/babel-french
https://ctan.org/pkg/babel-friulan
https://ctan.org/pkg/babel-galician
https://ctan.org/pkg/babel-georgian
https://ctan.org/pkg/babel-german
https://ctan.org/pkg/babel-greek
https://ctan.org/pkg/babel-hebrew
https://ctan.org/pkg/devanagari
https://ctan.org/pkg/babel-hungarian
https://ctan.org/pkg/babel-icelandic
https://ctan.org/pkg/babel-indonesian
https://ctan.org/pkg/babel-interlingua
https://ctan.org/pkg/babel-irish
https://ctan.org/pkg/babel-italian
https://ctan.org/pkg/babel-japanese
https://ctan.org/pkg/babel-latin
https://ctan.org/pkg/babel-latvian
https://ctan.org/pkg/babel-lithuanian
https://ctan.org/pkg/babel-sorbian
https://ctan.org/pkg/babel-macedonian
https://ctan.org/pkg/babel-malay
https://ctan.org/pkg/mongolian-babel
https://ctan.org/pkg/babel-german

Swiss High German Cyrillic script

northernsami x serbian
norwegian x Latin script

norsk slovak x
nynorsk x slovenian x
occitan x spanglish X
piedmontese x span}sh *
pinyin SW?dlSh X

. swissgerman x

polish x Swiss German, with tag gsw
portuguese x thai x

brazilian thaicjk
romanian x turkish x
romansh x turkmen sx
russian s ukrainian x
scottishgaelic x uppersorbian x

scottish vietnamese x
serbianc x welsh x

EXAMPLE An example of a language requiring a preprocessor and a separate package is
hindi. If you have got the velthuis/devnag package, create a file with extension .dn:

\documentclass{article}
\usepackage[hindi] {babel}
\begin{document}

{\dn devaanaa.m priya.h}
\end{document}

Then preprocess it with devnag (file), which creates {file). tex; you can then typeset the
latter with KTEX.

1.7. Languages supported by babel in the ‘modern’ mode

Here is the list of the names currently supported with ini locale files, with \babelprovide
(or provide=). With these languages, \babelfont loads (if not done before) the language
and script names (even if the language is defined as a package option with an Idf file).
These are also the names recognized by \babelprovide with a valueless import, which
will load the ini file with the tag given in parenthesis.

Following the current common practice (for example, the Unicode CLDR), all locales are
organized in a flat structure. This eases their identification and customization.

Many locale are quite usable, provided captions and dates are not required (which is a
very frequent case, particularly in ancient languages). So, they are included in the default
babel distribution. This can serve to encourage contributions, too. A warning will
remember they are ‘bare minimum locales’. They are set in gray in the following list.

Recommended names are set in red.

In variants with the region or the script name (which are not highlighted), prefer the full form:s.
Bare minimum locales are set in gray.

Discouraged and deprecated names are not included.

Y means Unicode captions; ! means LICR captions.

There are some notes in a few locales.

The reference mark (x) is a link to the babel site.

abkhazian (ab) x akan (ak) x

afar (aa) x akkadian (akk) x
afrikaans® (af) x albanian™ (sq)
aghem (agq) algerianarabic (arg)

11

https://ctan.org/pkg/babel-samin
https://ctan.org/pkg/babel-norsk
https://ctan.org/pkg/babel-norsk
https://ctan.org/pkg/babel-occitan
https://ctan.org/pkg/babel-piedmontese
https://ctan.org/pkg/babel-polish
https://ctan.org/pkg/babel-portuges
https://ctan.org/pkg/babel-romanian
https://ctan.org/pkg/babel-romansh
https://ctan.org/pkg/babel-russian
https://ctan.org/pkg/babel-scottish
https://ctan.org/pkg/babel-serbianc
https://ctan.org/pkg/babel-slovak
https://ctan.org/pkg/babel-slovenian
https://ctan.org/pkg/babel-spanglish
https://ctan.org/pkg/babel-spanish
https://ctan.org/pkg/babel-swedish
https://ctan.org/pkg/babel-swissgerman
https://ctan.org/pkg/babel-thai
https://ctan.org/pkg/babel-turkish
https://ctan.org/pkg/turkmen
https://ctan.org/pkg/babel-ukrainian
https://ctan.org/pkg/sorbian
https://ctan.org/pkg/babel-vietnamese
https://ctan.org/pkg/babel-welsh
https://latex3.github.io/babel/guides/locale-abkhazian.html
https://latex3.github.io/babel/guides/locale-afar.html
https://latex3.github.io/babel/guides/locale-afrikaans.html
https://latex3.github.io/babel/guides/locale-aghem.html
https://latex3.github.io/babel/guides/locale-akan.html
https://latex3.github.io/babel/guides/locale-akkadian.html
https://latex3.github.io/babel/guides/locale-albanian.html
https://latex3.github.io/babel/guides/locale-algerianarabic.html

Darija or Lahja Djazairia, with tag arq, different
from Standard Arabic as spoken in Alger, with tag

ar-DZ.

amharic® (am) x

ancientegyptian (egy) x

ancientgreek™ (gre) x

It’s a different language from greek.

ancienthebrew (hbo) x

arabic" (ar) x
arabic-algeria" (ar-Dz)
arabic-dz" (ar-Dz)
arabic-egypt" (ar-EG)
arabic-eg" (ar-EG)
arabic-iraq" (ar-1Q)
arabic-iq" (ar-IQ)
arabic-jordan" (ar-JO)
arabic-jo" (arJoO)
arabic-lebanon" (ar-LB)
arabic-1b" (ar-LB)
arabic-morocco" (ar-MA)
arabic-ma" (ar-MA)
arabic-palestinianterritories" (ar-PS)
arabic-ps" (ar-PS)
arabic-saudiarabia" (ar-SA)
arabic-sa" (ar-SA)
arabic-syria" (ar-SY)
arabic-sy" (ar-SY)
arabic-tunisia" (ar-TN)
arabic-tn" (ar-TN)

aramaic (arc) x
aramaic-nabataean (arc-nbat)
aramaic-nbat (arc-nbat)
aramaic-palmyrene (arc-palm)
aramaic-palm (arc-palm)

armenian®! (hy) x

assamese" (as) x

asturian® (ast) x

asu (asa) x

atsam (cch) x

avestan (ae) x

awadhi (awa)

aymara (ay)

azerbaijani® (az) x
azerbaijani-cyrillic (az-Cyrl)
azerbaijani-cyrl (az-Cyrl)
azerbaijani-latin (az-Latn)
azerbaijani-latn (az-Latn)

bafia (ksf) x

balinese (ban) x

baluchi (bal)

bambara (bm) x

bangla" (bn) x
bengali® (bn)

basaa (bas) x

bashkir (ba) x

basque"! (eu) x

bataktoba (bbc) x

bavarian (bar) x

belarusian! (be) x
belarusian-taraskievica®™ (be-tarask)

bemba (bem) x

bena (bez) x

betawi (bew) x

bhojpuri (bho) x

blin (byn) x

bodo (brx) x

bosnian®' (bs) x
bosnian-cyrillic (bs-Cyrl)
bosnian-cyrl (bs-Cyrl)
bosnian-latin™ (bs-Latn)
bosnian-latn"' (bs-Latn)

breton! (br) x

bulgarian™ (bg) x

buriat™ (bua) x

burmese (my) x

cantonese (yue) x

carian (xcr) x

catalan"! (ca) x

cebuano (ceb) x

centralatlastamazight (tzm) x

centralkurdish" (ckb) x
sorani (ckb)
centralkurdish-latin" (ckb-Latn)
centralkurdish-latn" (ckb-Latn)

chakma (ccp) x

chechen (ce) x

cherokee (chr) x

chiga (cgg) x

chinese" (zh) x
chinese-simplified" (zh-Hans)
chinese-hans" (zh-Hans)
chinese-traditional (zh-Hant)
chinese-hant" (zh-Hant)
chinese-simplified-

hongkongsarchina (zh-Hans-HK)
chinese-hans-hk (zh-Hans-HK)
chinese-simplified-
macausarchina (zh-Hans-MO)

chinese-hans-mo (zh-Hans-MO)

chinese-simplified-singapore (zh-Hans-SG)

chinese-hans-sg (zh-Hans-SG)
chinese-hant-hk (zh-Hant-HK)
chinese-traditional-
hongkongsarchina (zh-Hant-HK)
chinese-hant-mo (zh-Hant-MO)
chinese-traditional-
macausarchina (zh-Hant-MO)

churchslavic® (cu) x
churchslavic-cyrs" (cu-Cyrs)
churchslavic-glag (cu-Glag)
churchslavic-glagolitic (cu-Glag)
churchslavic-oldcyrillic" (cu-Cyrs)

chuvash (cv) x

classicalmandaic (myz) x

colognian (ksh) x

coptic (cop) x

cornish (kw) x

corsican (co) x

croatian" (hr) x

czech" (cs) x

danish® (da) x

divehi (dv) x

dogri (doi) x

duala (dua)

dutch™ () x

dzongkha (dz)

https://latex3.github.io/babel/guides/locale-amharic.html
https://latex3.github.io/babel/guides/locale-ancientegyptian.html
https://latex3.github.io/babel/guides/locale-ancientgreek.html
https://latex3.github.io/babel/guides/locale-ancienthebrew.html
https://latex3.github.io/babel/guides/locale-arabic.html
https://latex3.github.io/babel/guides/locale-aramaic.html
https://latex3.github.io/babel/guides/locale-armenian.html
https://latex3.github.io/babel/guides/locale-assamese.html
https://latex3.github.io/babel/guides/locale-asturian.html
https://latex3.github.io/babel/guides/locale-asu.html
https://latex3.github.io/babel/guides/locale-atsam.html
https://latex3.github.io/babel/guides/locale-avestan.html
https://latex3.github.io/babel/guides/locale-awadhi.html
https://latex3.github.io/babel/guides/locale-aymara.html
https://latex3.github.io/babel/guides/locale-azerbaijani.html
https://latex3.github.io/babel/guides/locale-bafia.html
https://latex3.github.io/babel/guides/locale-balinese.html
https://latex3.github.io/babel/guides/locale-baluchi.html
https://latex3.github.io/babel/guides/locale-bambara.html
https://latex3.github.io/babel/guides/locale-bangla.html
https://latex3.github.io/babel/guides/locale-basaa.html
https://latex3.github.io/babel/guides/locale-bashkir.html
https://latex3.github.io/babel/guides/locale-basque.html
https://latex3.github.io/babel/guides/locale-bataktoba.html
https://latex3.github.io/babel/guides/locale-bavarian.html
https://latex3.github.io/babel/guides/locale-belarusian.html
https://latex3.github.io/babel/guides/locale-bemba.html
https://latex3.github.io/babel/guides/locale-bena.html
https://latex3.github.io/babel/guides/locale-betawi.html
https://latex3.github.io/babel/guides/locale-bhojpuri.html
https://latex3.github.io/babel/guides/locale-blin.html
https://latex3.github.io/babel/guides/locale-bodo.html
https://latex3.github.io/babel/guides/locale-bosnian.html
https://latex3.github.io/babel/guides/locale-breton.html
https://latex3.github.io/babel/guides/locale-bulgarian.html
https://latex3.github.io/babel/guides/locale-buriat.html
https://latex3.github.io/babel/guides/locale-burmese.html
https://latex3.github.io/babel/guides/locale-cantonese.html
https://latex3.github.io/babel/guides/locale-carian.html
https://latex3.github.io/babel/guides/locale-catalan.html
https://latex3.github.io/babel/guides/locale-cebuano.html
https://latex3.github.io/babel/guides/locale-centralatlastamazight.html
https://latex3.github.io/babel/guides/locale-centralkurdish.html
https://latex3.github.io/babel/guides/locale-chakma.html
https://latex3.github.io/babel/guides/locale-chechen.html
https://latex3.github.io/babel/guides/locale-cherokee.html
https://latex3.github.io/babel/guides/locale-chiga.html
https://latex3.github.io/babel/guides/locale-chinese.html
https://latex3.github.io/babel/guides/locale-churchslavic.html
https://latex3.github.io/babel/guides/locale-chuvash.html
https://latex3.github.io/babel/guides/locale-classicalmandaic.html
https://latex3.github.io/babel/guides/locale-colognian.html
https://latex3.github.io/babel/guides/locale-coptic.html
https://latex3.github.io/babel/guides/locale-cornish.html
https://latex3.github.io/babel/guides/locale-corsican.html
https://latex3.github.io/babel/guides/locale-croatian.html
https://latex3.github.io/babel/guides/locale-czech.html
https://latex3.github.io/babel/guides/locale-danish.html
https://latex3.github.io/babel/guides/locale-divehi.html
https://latex3.github.io/babel/guides/locale-dogri.html
https://latex3.github.io/babel/guides/locale-duala.html
https://latex3.github.io/babel/guides/locale-dutch.html
https://latex3.github.io/babel/guides/locale-dzongkha.html

egyptianarabic (arz) swissgerman, with tag gsw is a different language.
Masri or Colloquial Egyptian, with tag arz, Butsee 25.17 % .
different from Standard Arabic as spoken in

Egypt, with tag ar-EG.

embu (ebu)

englishul (en) x
american' (en-US)
americanenglish” (en-US)
usenglish® (en-US)
australian® (en-AU)
australianenglish®! (en-AU)
british" (en-GB)
britishenglish" (en-GB)
ukenglish® (en-GB)
canadian™ (en-cA)
canadianenglish™ (en-CA)
english-australia (en-AU)
english-au® (en-AU)
english-canada (en-CA)
english-ca® (en-CA)
english-unitedkingdom" (en-GB)
english-gb®! (en-GB)
english-newzealand" (en-Nz)
newzealand"' (en-Nz)
english-unitedstates® (en-US)
english-nz®! (en-Nz)
english-us® (en-US)

erzya (myv)

esperanto (eo) x

estonian™ (et) x

etruscan (ett) x

ewe (ee) x

ewondo (ewo)

faroese (fo) x

filipino (fil)

finnish®! (f) x

french" (fr)
acadian®! (fr-x-acadian)
canadianfrench" (fr-cA)
swissfrench™ (fr-CH)
french-belgium" (fr-BE)
french-be® (fr-BE)
french-canada®! (fr-CA)
french-ca® (fr-ca)
french-luxembourg" (fr-LU)
french-1u (fr-LU)
french-switzerland™ (fr-CH)
french-ch® (fr-CH)

friulian™ (fur) x

fulah (ff) x

ga (gaa) x

galician"! (gh) x

ganda (lg)

geez (gez) x

georgian" (ka) x

german™ (de) x

Note the 1df names differ. See note above and also

2517 % .
german-traditional™ (de-1901)
austrian"! (de-AT)
german-austria™ (de-AT)
german-at"' (de-AT)

german-austria-traditional® (de-AT-1901)

swisshighgerman® (de-CH)

german-switzerland®! (de-CH)
german-ch® (de-CH)
german-switzerland-
traditional™ (de-CH-1901)

gothic (got) x

greek™ (el x
monotonicgreek™ (el)
polytonicgreek™ (el-polyton)

guarani (gn)

gujarati® (gu) x

gusii (guz) x

haryanvi (bge) x

hausa™ (ha) x
hausa-ghana (ha-GH)
hausa-gh (ha-GH)
hausa-niger (ha-NE)
hausa-ne (ha-NE)

hawaiian (haw) x

hebrew'! (he) x

hindi" (hi) x

hmongnjua (hnj) x

hungarian™ (hu) x
magyar® (hu)

icelandic™ (s) x

igbo (ig) x

inarisami (smn) x

indonesian® (d)

ingush @inh)

interlingua™ (a) x

interslavic" (sv) x

inuktitut (iu) x

irish" (ga) x

italian" (it

japanese" (ja) x

javanese (jv) x

jju (kaj) x

jolafonyi (dyo) x

kabuverdianu (kea) x

kabyle (kab)

kaingang (kgp) x

kako (kkj)

kalaallisut (k) x

kalenjin (kln)

kamba (kam) x

kangri (xnr)

kannada" (kn) x

kashmiri (ks) x

kazakh (kk) x

khmer" (km)

kikuyu (ki) x

kinyarwanda (rw) x

komi (kv) x

konkani (kok) x

korean" (ko) x
korean-han" (ko-Hani)
korean-hani" (ko-Hani)

koyraborosenni (ses) x

koyrachiini (khq)

kurdish®! (ku) x
kurdish-arab" (ku-Arab)
kurdish-arabic" (ku-Arab)

https://latex3.github.io/babel/guides/locale-egyptianarabic.html
https://latex3.github.io/babel/guides/locale-embu.html
https://latex3.github.io/babel/guides/locale-english.html
https://latex3.github.io/babel/guides/locale-erzya.html
https://latex3.github.io/babel/guides/locale-esperanto.html
https://latex3.github.io/babel/guides/locale-estonian.html
https://latex3.github.io/babel/guides/locale-etruscan.html
https://latex3.github.io/babel/guides/locale-ewe.html
https://latex3.github.io/babel/guides/locale-ewondo.html
https://latex3.github.io/babel/guides/locale-faroese.html
https://latex3.github.io/babel/guides/locale-filipino.html
https://latex3.github.io/babel/guides/locale-finnish.html
https://latex3.github.io/babel/guides/locale-french.html
https://latex3.github.io/babel/guides/locale-friulian.html
https://latex3.github.io/babel/guides/locale-fulah.html
https://latex3.github.io/babel/guides/locale-ga.html
https://latex3.github.io/babel/guides/locale-galician.html
https://latex3.github.io/babel/guides/locale-ganda.html
https://latex3.github.io/babel/guides/locale-geez.html
https://latex3.github.io/babel/guides/locale-georgian.html
https://latex3.github.io/babel/guides/locale-german.html
https://latex3.github.io/babel/news/whats-new-in-babel-25.17.html
https://latex3.github.io/babel/news/whats-new-in-babel-25.17.html
https://latex3.github.io/babel/guides/locale-gothic.html
https://latex3.github.io/babel/guides/locale-greek.html
https://latex3.github.io/babel/guides/locale-guarani.html
https://latex3.github.io/babel/guides/locale-gujarati.html
https://latex3.github.io/babel/guides/locale-gusii.html
https://latex3.github.io/babel/guides/locale-haryanvi.html
https://latex3.github.io/babel/guides/locale-hausa.html
https://latex3.github.io/babel/guides/locale-hawaiian.html
https://latex3.github.io/babel/guides/locale-hebrew.html
https://latex3.github.io/babel/guides/locale-hindi.html
https://latex3.github.io/babel/guides/locale-hmongnjua.html
https://latex3.github.io/babel/guides/locale-hungarian.html
https://latex3.github.io/babel/guides/locale-icelandic.html
https://latex3.github.io/babel/guides/locale-igbo.html
https://latex3.github.io/babel/guides/locale-inarisami.html
https://latex3.github.io/babel/guides/locale-indonesian.html
https://latex3.github.io/babel/guides/locale-ingush.html
https://latex3.github.io/babel/guides/locale-interlingua.html
https://latex3.github.io/babel/guides/locale-interslavic.html
https://latex3.github.io/babel/guides/locale-inuktitut.html
https://latex3.github.io/babel/guides/locale-irish.html
https://latex3.github.io/babel/guides/locale-italian.html
https://latex3.github.io/babel/guides/locale-japanese.html
https://latex3.github.io/babel/guides/locale-javanese.html
https://latex3.github.io/babel/guides/locale-jju.html
https://latex3.github.io/babel/guides/locale-jolafonyi.html
https://latex3.github.io/babel/guides/locale-kabuverdianu.html
https://latex3.github.io/babel/guides/locale-kabyle.html
https://latex3.github.io/babel/guides/locale-kaingang.html
https://latex3.github.io/babel/guides/locale-kako.html
https://latex3.github.io/babel/guides/locale-kalaallisut.html
https://latex3.github.io/babel/guides/locale-kalenjin.html
https://latex3.github.io/babel/guides/locale-kamba.html
https://latex3.github.io/babel/guides/locale-kangri.html
https://latex3.github.io/babel/guides/locale-kannada.html
https://latex3.github.io/babel/guides/locale-kashmiri.html
https://latex3.github.io/babel/guides/locale-kazakh.html
https://latex3.github.io/babel/guides/locale-khmer.html
https://latex3.github.io/babel/guides/locale-kikuyu.html
https://latex3.github.io/babel/guides/locale-kinyarwanda.html
https://latex3.github.io/babel/guides/locale-komi.html
https://latex3.github.io/babel/guides/locale-konkani.html
https://latex3.github.io/babel/guides/locale-korean.html
https://latex3.github.io/babel/guides/locale-koyraborosenni.html
https://latex3.github.io/babel/guides/locale-koyrachiini.html
https://latex3.github.io/babel/guides/locale-kurdish.html

northernkurdish™ (ku)
northernkurdish-arab" (ku-Arab)
northernkurdish-arabic" (ku-Arab)

kwasio (nmg) x

kyrgyz (ky) x

ladino (lad) x

lakota (kt) x

langi (lag) x

lao" (lo) x

latin® (a) x
ecclesiasticallatin™ (la-x-ecclesia)
classicallatin® (la-x-classic)
medievallatin® (la-x-medieval)

latvian® (v) x

lepcha (lep) x

ligurian (lij)

Limbu (@if) x
Timbu-Tlimb (if-limb)
limbu-limbu (lif-limb)

lineara (lab) x

lingala (In) x

lithuanian™™ @ x

lombard (Imo)

lowersorbian®! (dsh) x

lowgerman (nds) x

lu (khb) x

lycian (xlc)

lydian (xld)

lubakatanga (Iw) x

luo (luo) x

Luxembourgish®™ @b) x

luyia (luy) x

macedonian® (mk) x

machame (jmc) x

maithili (mai)

makasar (mak) x
makasar-bugi (mak-Bugi)
makasar-buginese (mak-Bugi)

makhuwa (vmw)

makhuwameetto (mgh) x

makonde (kde) x

malagasy (mg)

malay" (ms)
malay-brunei (ms-BN)
malay-bn (ms-BN)
malay-singapore (ms-SG)
malay-sg (ms-SG)

malayalam" (ml) x

maltese (mt) x

manipuri (mni) x

manx (gv) x

maori (mi) x

marathi" (mr) x

masai (mas) x

mazanderani (mzn) x

meru (mer) x

meta (mgo)

mongolian (mn) x

monotonicgreek™ (el) x

morisyen (mfe) x

mundang (mua)

muscogee (mus) x

nama (naq) *

navajo (mv) x
nepali (ne) x
newari (mew) x
ngiemboon (nnh) x
ngomba (jgo)
nheengatu (yrl) x
nigerianpidgin (pcm) x
nko (ngo) %
northernfrisian (frr) x
northernluri (rc) x
northernsami® (se)
samin® (se)
northernsotho (nso)
northndebele (nd) x
norwegian™ (no) x
norsk® (no)

In the CLDR, norwegianbokmal (nb) just inherites

from norwegian, so use the latter.

nuer (nus) x

nyanja (ny) x

nyankole (nyn)

nynorsk® (nn) x
norwegiannynorskul (nn)

occitan® (oc) x

odia" (or) x

Preferred to oriya.

oldirish (sga) x

oldnorse (non) x

oldpersian (peo)

olduighur (oui)

oromo (om)

osage (osa)

ossetic (os)

papiamento (pap) x

pashto (ps) x

persian® (fa) x
farsi® (fa)

phoenician (phn) x

piedmontese™ (pms) x

polish™ (pl)

portuguese® (pt) x
brazilian™ (pt-BR)
brazilianportuguese®™ (pt-BR)
portuguese-brazil® (pt-BR)
portuguese-br (pt-BR)
europeanportuguese! (pt-PT)
portuguese-portugal®™ (pt-PT)
portuguese-pt*™ (pt-PT)

prussian (prg) x

punjabi® (pa) x
punjabi-arabic (pa-Arab)
punjabi-arab (pa-Arab)
punjabi-gurmukhi® (pa-Guru)
punjabi-guru® (pa-Guru)

quechua (qu)

rajasthani (raj) x

romanian®! (ro) x
moldavian® (ro-MD)
romanian-moldova®™ (ro-MD)
romanian-md®! (ro-MD)

romansh® (rm)

rombo (rof) x

rundi (rn) x

14

https://latex3.github.io/babel/guides/locale-kwasio.html
https://latex3.github.io/babel/guides/locale-kyrgyz.html
https://latex3.github.io/babel/guides/locale-ladino.html
https://latex3.github.io/babel/guides/locale-lakota.html
https://latex3.github.io/babel/guides/locale-langi.html
https://latex3.github.io/babel/guides/locale-lao.html
https://latex3.github.io/babel/guides/locale-latin.html
https://latex3.github.io/babel/guides/locale-latvian.html
https://latex3.github.io/babel/guides/locale-lepcha.html
https://latex3.github.io/babel/guides/locale-ligurian.html
https://latex3.github.io/babel/guides/locale-limbu.html
https://latex3.github.io/babel/guides/locale-lineara.html
https://latex3.github.io/babel/guides/locale-lingala.html
https://latex3.github.io/babel/guides/locale-lithuanian.html
https://latex3.github.io/babel/guides/locale-lombard.html
https://latex3.github.io/babel/guides/locale-lowersorbian.html
https://latex3.github.io/babel/guides/locale-lowgerman.html
https://latex3.github.io/babel/guides/locale-lu.html
https://latex3.github.io/babel/guides/locale-lycian.html
https://latex3.github.io/babel/guides/locale-lydian.html
https://latex3.github.io/babel/guides/locale-lubakatanga.html
https://latex3.github.io/babel/guides/locale-luo.html
https://latex3.github.io/babel/guides/locale-luxembourgish.html
https://latex3.github.io/babel/guides/locale-luyia.html
https://latex3.github.io/babel/guides/locale-macedonian.html
https://latex3.github.io/babel/guides/locale-machame.html
https://latex3.github.io/babel/guides/locale-maithili.html
https://latex3.github.io/babel/guides/locale-makasar.html
https://latex3.github.io/babel/guides/locale-makhuwa.html
https://latex3.github.io/babel/guides/locale-makhuwameetto.html
https://latex3.github.io/babel/guides/locale-makonde.html
https://latex3.github.io/babel/guides/locale-malagasy.html
https://latex3.github.io/babel/guides/locale-malay.html
https://latex3.github.io/babel/guides/locale-malayalam.html
https://latex3.github.io/babel/guides/locale-maltese.html
https://latex3.github.io/babel/guides/locale-manipuri.html
https://latex3.github.io/babel/guides/locale-manx.html
https://latex3.github.io/babel/guides/locale-maori.html
https://latex3.github.io/babel/guides/locale-marathi.html
https://latex3.github.io/babel/guides/locale-masai.html
https://latex3.github.io/babel/guides/locale-mazanderani.html
https://latex3.github.io/babel/guides/locale-meru.html
https://latex3.github.io/babel/guides/locale-meta.html
https://latex3.github.io/babel/guides/locale-mongolian.html
https://latex3.github.io/babel/guides/locale-monotonicgreek.html
https://latex3.github.io/babel/guides/locale-morisyen.html
https://latex3.github.io/babel/guides/locale-mundang.html
https://latex3.github.io/babel/guides/locale-muscogee.html
https://latex3.github.io/babel/guides/locale-nama.html
https://latex3.github.io/babel/guides/locale-navajo.html
https://latex3.github.io/babel/guides/locale-nepali.html
https://latex3.github.io/babel/guides/locale-newari.html
https://latex3.github.io/babel/guides/locale-ngiemboon.html
https://latex3.github.io/babel/guides/locale-ngomba.html
https://latex3.github.io/babel/guides/locale-nheengatu.html
https://latex3.github.io/babel/guides/locale-nigerianpidgin.html
https://latex3.github.io/babel/guides/locale-nko.html
https://latex3.github.io/babel/guides/locale-northernfrisian.html
https://latex3.github.io/babel/guides/locale-northernluri.html
https://latex3.github.io/babel/guides/locale-northernsami.html
https://latex3.github.io/babel/guides/locale-northernsotho.html
https://latex3.github.io/babel/guides/locale-northndebele.html
https://latex3.github.io/babel/guides/locale-norwegian.html
https://latex3.github.io/babel/guides/locale-nuer.html
https://latex3.github.io/babel/guides/locale-nyanja.html
https://latex3.github.io/babel/guides/locale-nyankole.html
https://latex3.github.io/babel/guides/locale-nynorsk.html
https://latex3.github.io/babel/guides/locale-occitan.html
https://latex3.github.io/babel/guides/locale-odia.html
https://latex3.github.io/babel/guides/locale-oldirish.html
https://latex3.github.io/babel/guides/locale-oldnorse.html
https://latex3.github.io/babel/guides/locale-oldpersian.html
https://latex3.github.io/babel/guides/locale-olduighur.html
https://latex3.github.io/babel/guides/locale-oromo.html
https://latex3.github.io/babel/guides/locale-osage.html
https://latex3.github.io/babel/guides/locale-ossetic.html
https://latex3.github.io/babel/guides/locale-papiamento.html
https://latex3.github.io/babel/guides/locale-pashto.html
https://latex3.github.io/babel/guides/locale-persian.html
https://latex3.github.io/babel/guides/locale-phoenician.html
https://latex3.github.io/babel/guides/locale-piedmontese.html
https://latex3.github.io/babel/guides/locale-polish.html
https://latex3.github.io/babel/guides/locale-portuguese.html
https://latex3.github.io/babel/guides/locale-prussian.html
https://latex3.github.io/babel/guides/locale-punjabi.html
https://latex3.github.io/babel/guides/locale-quechua.html
https://latex3.github.io/babel/guides/locale-rajasthani.html
https://latex3.github.io/babel/guides/locale-romanian.html
https://latex3.github.io/babel/guides/locale-romansh.html
https://latex3.github.io/babel/guides/locale-rombo.html
https://latex3.github.io/babel/guides/locale-rundi.html

russian®! (ru) x
rwa (rwk) x
sabaean (xsa) x
saho (ssy) x
sakha (sah) x
samaritan (smp) x
samburu (saq)
sango (sg)
sangu (sbp) x
sanskrit (sa) x
sanskrit-bangla (sa-Beng)
sanskrit-beng (sa-Beng)
sanskrit-devanagari (sa-Deva)
sanskrit-deva (sa-Deva)
sanskrit-gujarati (sa-Gujr)
sanskrit-gujr (sa-Gujr)
sanskrit-kannada (sa-Knda)
sanskrit-knda (sa-Knda)
sanskrit-malayalam (sa-Mlym)
sanskrit-mlym (sa-Mlym)
sanskrit-telugu (sa-Telu)
sanskrit-telu (sa-Telu)
santali (sat)
saraiki (skr) x
sardinian (sc) x
scottishgaelic" (gd) x
scottish™ (gd)
sena (seh) x
serbian®! (sr) x
Note the 1df names differ. See note above.
serbian-cyrillic® (sr-Cyrl)
serbian-cyrl® (sr-Cyrl)
serbian-cyrillic-
bosniaherzegovina (sr-Cyrl-BA)
serbian-cyrl-ba™ (sr-Cyrl-BA)
serbian-cyrillic-kosovo" (sr-Cyrl-XK)
serbian-cyrl-xk™ (sr-Cyrl-XK)
serbian-cyrillic-montenegro® (sr-Cyrl-ME)
serbian-cyrl-me" (sr-Cyrl-ME)
serbian-latin®! (sr-Latn)
serbian-latn™ (sr-Latn)
serbian-latin-
bosniaherzegovina™ (sr-Latn-BA)
serbian-latn-ba™ (sr-Latn-BA)
serbian-latin-kosovo" (sr-Latn-XK)
serbian-latn-xk™ (sr-Latn-XK)
serbian-la‘cin-montenegroul (sr-Latn-ME)
serbian-latn-me"™ (sr-Latn-ME)
serbian-ijekavsk®! (sr-ijekavsk)
serbian-latn-ijekavsk" (sr-Latn-ijekavsk)
shambala (ksb)
shona (sn) x
sichuanyi (i) x
sicilian (scn) x
silesian (szl)
sindhi (sd) x
sindhi-devanagari (sd-deva)
sindhi-deva (sd-deva)
sindhi-khojki (sd-khoj)
sindhi-khoj (sd-khoj)
sindhi-khudawadi (sd-sind)
sindhi-sind (sd-sind)
sinhala" (si) %

15

sinteromani (rmo) x
slovak" (sk) x
slovenian®! (sl) x
slovene™ (sD)
soga (xog) *
somali (so) x
southernaltai (alt) x
southernsotho (st)
southndebele (nr) x
spanish™ (es)
mexican® (es-MX)
mexicanspanish® (es-MX)
spanish-mexico™ (es-MX)
spanish-mx"' (es-MX)
standardmoroccantamazight (zgh) x
sundanese (su) x
swahili (sw) x
swati (ss)
swedish™ (sv)
swissgerman (gsw)
Different from swisshighgerman (de-CH), which is

German as spoken in Switzerland. Currently still
assigned to the de-CH-1901; see 25.17 %

alemannic (gsw)
alsatian (gsw-FR)

syriac (syr) x

tachelhit (shi) x
tachelhit-latin (shi-Latn)
tachelhit-latn (shi-Latn)
tachelhit-tifinagh (shi-Tfng)
tachelhit-tfng (shi-Tfng)

tainua (tdd) x

taita (dav) x

tajik (tg) x

tamil® (ta) x

tangut (txg) x

taroko (trv) x

tasawaq (twq) *

tatar (t) x

telugu® (te) x

teso (teo) x

thai (th) x

tibetan" (bo) x

tigre (tig) x

tigrinya (ti) x

tokpisin (tpi)

tongan (to) x

tsonga (ts) x

tswana (tn) x

turkish® (i) x

turkmen®! (tk)

tyap (keg) x

ugaritic (uga) x

ukrainian™ (uk) x

uppersorbian" (hsh) x

urdu® (ur) %

uyghur" (ug) x

uzbek (uz) x
uzbek-arabic (uz-Arab)
uzbek-arab (uz-Arab)
uzbek-cyrillic (uz-Cyrl)
uzbek-cyrl (uz-Cyrl)
uzbek-latin (uz-Latn)

https://latex3.github.io/babel/guides/locale-russian.html
https://latex3.github.io/babel/guides/locale-rwa.html
https://latex3.github.io/babel/guides/locale-sabaean.html
https://latex3.github.io/babel/guides/locale-saho.html
https://latex3.github.io/babel/guides/locale-sakha.html
https://latex3.github.io/babel/guides/locale-samaritan.html
https://latex3.github.io/babel/guides/locale-samburu.html
https://latex3.github.io/babel/guides/locale-sango.html
https://latex3.github.io/babel/guides/locale-sangu.html
https://latex3.github.io/babel/guides/locale-sanskrit.html
https://latex3.github.io/babel/guides/locale-santali.html
https://latex3.github.io/babel/guides/locale-saraiki.html
https://latex3.github.io/babel/guides/locale-sardinian.html
https://latex3.github.io/babel/guides/locale-scottishgaelic.html
https://latex3.github.io/babel/guides/locale-sena.html
https://latex3.github.io/babel/guides/locale-serbian.html
https://latex3.github.io/babel/guides/locale-shambala.html
https://latex3.github.io/babel/guides/locale-shona.html
https://latex3.github.io/babel/guides/locale-sichuanyi.html
https://latex3.github.io/babel/guides/locale-sicilian.html
https://latex3.github.io/babel/guides/locale-silesian.html
https://latex3.github.io/babel/guides/locale-sindhi.html
https://latex3.github.io/babel/guides/locale-sinhala.html
https://latex3.github.io/babel/guides/locale-sinteromani.html
https://latex3.github.io/babel/guides/locale-slovak.html
https://latex3.github.io/babel/guides/locale-slovenian.html
https://latex3.github.io/babel/guides/locale-soga.html
https://latex3.github.io/babel/guides/locale-somali.html
https://latex3.github.io/babel/guides/locale-southernaltai.html
https://latex3.github.io/babel/guides/locale-southernsotho.html
https://latex3.github.io/babel/guides/locale-southndebele.html
https://latex3.github.io/babel/guides/locale-spanish.html
https://latex3.github.io/babel/guides/locale-standardmoroccantamazight.html
https://latex3.github.io/babel/guides/locale-sundanese.html
https://latex3.github.io/babel/guides/locale-swahili.html
https://latex3.github.io/babel/guides/locale-swati.html
https://latex3.github.io/babel/guides/locale-swedish.html
https://latex3.github.io/babel/guides/locale-swissgerman.html
https://latex3.github.io/babel/news/whats-new-in-babel-25.17.html
https://latex3.github.io/babel/guides/locale-syriac.html
https://latex3.github.io/babel/guides/locale-tachelhit.html
https://latex3.github.io/babel/guides/locale-tainua.html
https://latex3.github.io/babel/guides/locale-taita.html
https://latex3.github.io/babel/guides/locale-tajik.html
https://latex3.github.io/babel/guides/locale-tamil.html
https://latex3.github.io/babel/guides/locale-tangut.html
https://latex3.github.io/babel/guides/locale-taroko.html
https://latex3.github.io/babel/guides/locale-tasawaq.html
https://latex3.github.io/babel/guides/locale-tatar.html
https://latex3.github.io/babel/guides/locale-telugu.html
https://latex3.github.io/babel/guides/locale-teso.html
https://latex3.github.io/babel/guides/locale-thai.html
https://latex3.github.io/babel/guides/locale-tibetan.html
https://latex3.github.io/babel/guides/locale-tigre.html
https://latex3.github.io/babel/guides/locale-tigrinya.html
https://latex3.github.io/babel/guides/locale-tokpisin.html
https://latex3.github.io/babel/guides/locale-tongan.html
https://latex3.github.io/babel/guides/locale-tsonga.html
https://latex3.github.io/babel/guides/locale-tswana.html
https://latex3.github.io/babel/guides/locale-turkish.html
https://latex3.github.io/babel/guides/locale-turkmen.html
https://latex3.github.io/babel/guides/locale-tyap.html
https://latex3.github.io/babel/guides/locale-ugaritic.html
https://latex3.github.io/babel/guides/locale-ukrainian.html
https://latex3.github.io/babel/guides/locale-uppersorbian.html
https://latex3.github.io/babel/guides/locale-urdu.html
https://latex3.github.io/babel/guides/locale-uyghur.html
https://latex3.github.io/babel/guides/locale-uzbek.html

uzbek-latn (uz-Latn) waray (war)

vai (vai) x welsh" (cy) x
vai-latin (vai-Latn) westernfrisian (fy) x
vai-latn (vai-Latn) wolaytta (wal) x
vai-vai (vai-Vaii) wolof (wo)
vai-vaii (vai-Vaii) xhosa (xh) x

venda (ve) x yangben (yav) x

venetian (vec) x yiddish (yi) x

vietnamese® (vi) x yoruba (yo) x

volapuk (vo) x zarma (dje) x

vunjo (vun) x zhuang (za) x

walser (wae) zulu (zu) x

1.8. Fonts in Unicode engines

NOTE For pdflatex and the standard fontenc mechanism, refer to the KTgX manuals or The
ETgX Companion, vol. I, ch. 9, and vol. II, ch. 10.

315 Babel has native support for Unicode fonts (OpenType and TrueType) in luatex and
xetex by means of a high level interface on top of fontspec. This makes it easier to handle
a wide range of languages and scripts, and simplifies the process of typesetting
multilingual documents. As described below, with luatex the font can be switched
automatically based on the script without explicit markup.

There is no need to load fontspec explicitly — babel does it for you with the first
\babelfont.

NOTE See also the luaotfload fallback mechanism for a complementary approach, which
can be preferable when a font lacks a character or glyph required by a language.

\babelfont[(language-list)]1{(font-family)}[(font-options)]{({font-name)}
\babelfont[({language-list)]1{(font-family)}{(font-name)}[({font-options)]

The main purpose of \babelfont is to define at once the fonts required by the different
languages, with their corresponding language systems (script and language). So, if you
load, say, 4 languages, \babelfont{rm}{FreeSerif} defines 4 fonts (with their variants, of
course), which are switched with the language by babel. It is a tool to make things easier
and transparent to the user. 2515 The [(font-options)] can go before or after the
{(font-name)}.

Here font-family is rm, sf or tt (or newly defined ones, as explained below), and
font-name is the same as in fontspec and the like.

If no language is given, then it is considered the default font for the family. On the other
hand, if there is one or more languages in the optional argument, the font will be assigned
to all of them, overriding the default one. Alternatively, you may set a font for a script — just
precede its name (lowercase) with a star (e.g., *devanagari).

With the optional argument, the font is not yet loaded, but just predeclared. In other
words, font loading is lazy, which means you may define as many fonts as you want ‘just in
case’, because if the language is never selected, the corresponding \babelfont declaration
is just ignored.

Babel takes care of the font language and the font script when languages are selected (as
well as the writing direction). In other words, there is usually no need to set the Language
and the Script explicitly; in fact, it’s even discouraged. In most cases, you will not need
font-options, which is the same as in fontspec, but you may add further key/value pairs if
necessary.

\babelfont can be used to implicitly define a new font family. Just write its name instead
of rm, sf or tt. This is the preferred way to select fonts in addition to the three basic
families.

2414% With luatex, Babel selects the renderer in the following way:

16

https://latex3.github.io/babel/guides/locale-vai.html
https://latex3.github.io/babel/guides/locale-venda.html
https://latex3.github.io/babel/guides/locale-venetian.html
https://latex3.github.io/babel/guides/locale-vietnamese.html
https://latex3.github.io/babel/guides/locale-volapuk.html
https://latex3.github.io/babel/guides/locale-vunjo.html
https://latex3.github.io/babel/guides/locale-walser.html
https://latex3.github.io/babel/guides/locale-waray.html
https://latex3.github.io/babel/guides/locale-welsh.html
https://latex3.github.io/babel/guides/locale-westernfrisian.html
https://latex3.github.io/babel/guides/locale-wolaytta.html
https://latex3.github.io/babel/guides/locale-wolof.html
https://latex3.github.io/babel/guides/locale-xhosa.html
https://latex3.github.io/babel/guides/locale-yangben.html
https://latex3.github.io/babel/guides/locale-yiddish.html
https://latex3.github.io/babel/guides/locale-yoruba.html
https://latex3.github.io/babel/guides/locale-zarma.html
https://latex3.github.io/babel/guides/locale-zhuang.html
https://latex3.github.io/babel/guides/locale-zulu.html
https://latex3.github.io/babel/news/whats-new-in-babel-25.15.html
https://latex3.github.io/babel/news/whats-new-in-babel-24.14.html

* The default renderer in alphabetic scripts, so that the tools provided by luaotfload for
ligatures, kerning and the like, which are essential typographical features in these
scripts, are directly available: Armenian, Coptic, Cyrillic, Georgian, Glagolitic, Gothic,
Greek, Latin, Old Church Slavonic Cyrillic.

» Harfbuzz in the rest of scripts, particularly complex scripts with heavy contextual
analysis (like Arabic and Devanagari).

You can still select a different renderer with the fontspec key Renderer. Note also the same
font can be loaded with different renderers. See Comparing the modes for further info.

NOTE There is a list of fonts in Which method for which language. If you know the
codepoint of a character in the script you need, you can find fonts containing it with
albatross (requires Java) or with something like fc-1ist :charset=1033C family in
the commands line (in this case, a Gothic character, the script required by the gothic
language).

NOTE As babel sets the font language system, the following setup is redundant, so avoid it
and use only the first line:

\babelfont{rm}{DejaVu Serif}
\babelfont[armenian]{rm}[Script=Armenian, Language=Armenian]{DejaVu Serif}

EXAMPLE Usage in most cases is very simple. Let us assume you are setting up a document
in Swedish, with some words in Hebrew, with a font suited for both languages. Here the
option bidi=default activates a simple (or, rather, simplistic) bidirectional mode.

LUATEX/XETEX

\documentclass{article}

\usepackage[swedish, bidi=default]{babel}
\babelfont{rm}{NewComputerModernl@}
\begin{document}

Svenska \foreignlanguage{hebrew}{n'12ay} svenska.
\end{document}

If on the other hand you have to resort to different fonts, you can replace the red line
above with, say:

\babelfont{rm}{Iwona}

\babelfont[hebrew]{rm}{FreeSerif}

EXAMPLE Thanks to this high level interface to fontspec, the roman fonts for all
secondary languages in the Cyrillic and Greek scripts can be set at once with the
following single line:

LUATEX/XETEX

\babelfont[*cyrillic, *greek]{rm}{NewComputerModernlQ}

And if you need, say, Arabic and Devanagari:

\babelfont[*arabic, *devanagari]{rm}{FreeSerif}

Babel does the rest for you, including setting the font script and language.

17

https://github.com/latex3/luaotfload/wiki/Comparing-the-modes
https://latex3.github.io/babel/guides/which-method-for-which-language.html

EXAMPLE Since each locale is a separate ‘language’, they can be assigned different fonts.
In this example, we set Simplified and Tradicional Chinese:

\babelfont[chinese-simplified]{rm}{Noto Serif CJK SC}
\babelfont[chinese-simplified]{sf}{Noto Sans CJK SC}

\babelfont[chinese-traditional]{rm}{Noto Serif CJK TC}
\babelfont[chinese-traditional]{sf}{Noto Sans CJK TC}

EXAMPLE Here is how to declare a new family:

\babelfont{kai}{FandolKai}

Now, \kaifamily and \kaidefault, as well as \textkai are at your disposal.

NOTE You may load fontspec explicitly. For example:

\usepackage{fontspec}

\newfontscript{Devanagari}{deva}
\babelfont[hindi]{rm}{Shobhika}

This makes sure the OpenType script for Devanagari is deva and not dev2, in case you
need it.

NOTE \fontspec is not touched at all, only the preset font families (rm, sf, tt, and the
like). If a language is switched when an ad hoc font is active, or you select the font with
this command, neither the script nor the language is passed. You must add them by
hand. This is by design, for several reasons —for example, each font has its own set of
features and a generic setting for several of them can be problematic, and also
preserving a “lower-level” font selection is useful.

NOTE Directionality is a property affecting margins, indentation, column order, etc., not
just text. Therefore, it is under the direct control of the language, which applies both the
script and the direction to the text. As a consequence, there is no need to set Script
when declaring a font with \babelfont (nor Language). In fact, it is even discouraged.

NOTE The keys Language and Script just pass these values to the font, and do not set the
script for the language (and therefore the writing direction). In other words, the ini file
or \babelprovide provides default values for \babelfont if omitted, but the opposite is
not true. See the note above for the reasons of this behavior.

NOTE \babelfont is a high level interface to fontspec, and therefore in xetex you can
apply Mappings. For example, there is a set of transliterations for Brahmic scripts by
David M. Jones. After installing them in you distribution, just set the map as you would
do with fontspec.

WARNING Using \setxxxxfont and \babelfont at the same time is discouraged, but very
often works as expected. However, be aware with \setxxxxfont the language system
will not be set by babel and should be set with fontspec if necessary.

TROUBLESHOOTING Package fontspec Info: Language ’<lang>’ not explicitly supported
within font *’ with script *<script>’..
This is not and error. This info is shown by fontspec, not by babel. If everything is okay
in your document (and almost always it is), the best thing you can do is just to ignore it
altogether.

In some forums you can find the advice to set, more or less mechanically,
Language=Default. Do not follow it, because font features for the language will not be
applied, which can be relevant for many languages, like Urdu and Turkish. Set the
Language explicitly only if there is a reason to do it (for example, if fontspec/luaotfload
doesn’t fall back correctly a font feature to the default language). If you really want to
conceal this message, use instead:

18

https://github.com/davidmjones/brahmic-maps

\PassOptionsToPackage{silent}{fontspec}

TROUBLESHOOTING Package babel Info: The following fonts are not babel standard
families.

This is not an error. babel assumes that if you are using \babelfont for a family, very
likely you want to define the rest of them. If you don’t, you can find some
inconsistencies between families. This checking is done at the beginning of the
document, at a point where we cannot know which families will be used.

Actually, there is no real need to use \babelfont in a monolingual document, if you set
the language system in \setmainfont (or not, depending on what you want).

As the message explains, there is nothing intrinsically wrong with not defining all the
families. In fact, there is nothing intrinsically wrong with not using \babelfont at all.
But you must be aware that this may lead to some problems.

1.9. Basic language selectors

This section describes the commands to be used in the document to switch the language in
multilingual documents. In most cases, only the two basic macros \selectlanguage and
\foreignlanguage are necessary. The environments otherlanguage, otherlanguage* are
auxiliary, and described in the next section.

The main language is selected automatically when the document environment begins.

\selectlanguage{(language)}
\begin{selectlanguage}{(language)} ... \end{selectlanguage}
When a user wants to switch from one language to another he can do so using the macro

\selectlanguage. It is meant for blocks of texts, and therefore should be used mainly in
vertical mode, although it also works in horizontal mode.

\selectlanguage{german}

This command can be used as environment, too, in case there are relatively short texts
and you do not want to reset the language with a hardcode value.

NOTE Bear in mind \selectlanguage can be automatically executed, in some cases, in the
auxiliary files, at heads and foots, and after the environment otherlanguage*.

WARNING If used inside braces or a group there might be some non-local changes, as it
would be roughly equivalent to:

\bgroup
\selectlanguage{<inner-language>}
\egroup
\selectlanguage{<outer-language>}

If you want a change which is really local, you must enclose this code with an additional
grouping level. The same applies to the environment version.

WARNING There are a couple of issues related to the way the language information is
written to the auxiliary files:

* \selectlanguage should not be used inside some boxed environments (like floats or
minipage) to switch the language if you need the information written to the aux be
correctly synchronized. This rarely happens, but if it were the case, you must use the
environment version or otherlanguage instead.

19

* In addition, this macro inserts a \write in vertical mode, which may break the
vertical spacing in some cases (for example, between lists or at the beginning of a
table cell). 364 The behavior can be adjusted with
\babeladjust{select.write=(mode)}, where {mode) is:

- keep, the default — with it the \write and the skips are kept in the order they
are written);

— shift, which shifts the skips down and adds a \penalty;

— omit, which may seem a too drastic solution, because nothing is written, but
more often than not this command is applied to more or less shorts texts with
no sectioning or similar commands, and therefore no language
synchronization is necessary. In a table cell, a \leavevmode just before the
selector may be enough.

\foreignlanguagel[{option-list)]{({language)}{(text)}

It takes two mandatory arguments; the second argument is a phrase to be typeset
according to the rules of the language named in its first one.

This command (1) only switches the extra definitions and the hyphenation rules for the
language, not the names and dates, (2) does not send information about the language to
auxiliary files (i.e., the surrounding language is still in force), and (3) it works even if the
language has not been set as package option (but in such a case it only sets the
hyphenation patterns and a warning is shown). With the bidi option, it also enters in
horizontal mode (this is not done always for backwards compatibility), and since it is
meant for phrases only the text direction (and not the paragraph one) is set.

344% As already said, captions and dates are not switched. However, with the optional
argument you can switch them, too. So, you can write:

\foreignlanguage[date]{polish}{\today}

In addition, captions can be switched with captions (or both, of course, with date,
captions). Until 3.43 you had to write something like {\selectlanguage{..} ..}, which
was not always the most convenient way. See also the variant \otherlanguage* below.

NOTE \bibitem is out of sync with \selectlanguage in the aux file. The reason is
\bibitem uses \immediate (and others, in fact), while \selectlanguage doesn’t. There
is a similar issue with floats, too. There is no known workaround, but it’s not usually a
real issue.

1.10. Auxiliary language selectors
\begin{otherlanguage}{(language)} ... \end{otherlanguage}

Same as selectlanguage as environment, except spaces after the \begin and \end
commands are ignored. (Very likely, and because of the limitations of many old editors
with bidi text, the idea was \end{otherlanguage} had to be a line by itself.) The warning
above about the internal \write also applies here. The current mode (vertical or
horizontal) also remains unchanged.

\begin{otherlanguage*}[{option-list)]{(language)} ... \end{otherlanguage*}

Same as \foreignlanguage but as environment. Spaces are not ignored. 26.1x It can be
used as a command, too, like {\otherlanguage*{tamil}.. .}, but avoid using several of
them inside a group.

It was originally devised for intermixing left-to-right typesetting with right-to-left
typesetting in engines not supporting a change in the writing direction inside a line.
However, by default it never complied with the documented behavior and it is just a
version as environment of \ foreignlanguage, except when the package option bidi is set

20

https://latex3.github.io/babel/news/whats-new-in-babel-3.64.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.44.html
https://latex3.github.io/babel/news/whats-new-in-babel-26.1.html

—in this case, \foreignlanguage emits a \leavevmode, while otherlanguage* does not.
Like \foreignlanguage it is a text command, and therefore it doesn’t change the
paragraph direction.

EXAMPLE Here is a document putting in practice some of the techniques described, which
shows how to deal neatly with complex multilingual documents in luatex and xetex,
with the help of logical markup. You are writing a book on Indic literature with many
extracts in several languages, which fits in the category of ‘mostly monolingual’.
Loading of locales and fonts is lazy, which greatly simplifies the preamble.

\documentclass{article}
\usepackage[english]{babel}
\babelfont[*devanagari]{rm}{FreeSans}
\newenvironment{excerpt}[1]
{\begin{quote}\begin{otherlanguage*}{#1}}
{\end{otherlanguage*}\end{quote}}
\begin{document}
\section{Sanskrit literature}
Here is an excerpt:
\begin{excerpt}{sanskrit}
HPH
\end{excerpt}

\section{Hindi literature}

Here is an excerpt:
\begin{excerpt}{hindi}

\end{excerpt}
\section{Marathi literature}

Here is an excerpt:
\begin{excerpt}{marathi}

\end{excerpt}
\section{Nepali literature}

Here is an excerpt:
\begin{excerpt}{nepali}
Arett

\end{excerpt}

\section{Rajasthani literature}

Here is an excerpt:

\begin{excerpt}{rajasthani}
HPTH

\end{excerpt}

\end{document}

21

1.11. Plain

In e-Plain and pdf-Plain, load languages styles with \input and then use \begindocument
(the latter is defined by babel):

\input estonian.sty
\begindocument

WARNING Not all languages provide a sty file and some of them are not compatible with
those formats. Please, refer to Using babel with Plain for further details.

2. More on language loading and selection

2.1. A few tools
\babeltags{(tagl) = (languagel), (tag2) = (language2), ..}

39i In multilingual documents with many language-switches the commands above can
be cumbersome. With this tool shorter names can be defined. It adds nothing really new —
it is just syntactical sugar.
It defines \text(tagl){(text)} to be \foreignlanguage{{languagel)}{{text)}, and
\begin{(tagl)} to be \begin{otherlanguage*}{(languagel)}, and so on. Note \{tagl) is
also allowed, but remember to set it locally inside a group.

WARNING There is a clear drawback to this feature, namely, the ‘prefix’ \text. .. is
heavily overloaded in ETgX and conflicts with existing macros may arise (\textlatin,
\textbar, \textit, \textcolor and many others). The same applies to environments,
because arabic conflicts with \arabic. Furthermore, and because of this overloading,
detecting the language of a chunk of text by external tools can become unfeasible (is
\textga the locale for the African language Ga or something else?). Except if there is a
reason for this ‘syntactical sugar’, the best option is to stick to the default selectors or
even to define your own alternatives.

EXAMPLE With

\babeltags{de = german}

you can write

text \textde{German text} text

and

text

\begin{de}
German text

\end{de}

text

NOTE Something like \babeltags{finnish = finnish} islegitimate — it defines
\textfinnish and \finnish (and, of course, \begin{finnish}).

22

https://latex3.github.io/babel/guides/using-babel-with-plain.html

\babelensure[include=(commands), exclude=(commands), fontenc=(encoding)]{({language)}

39i Exceptin a few languages, like russian, captions and dates are just strings, and do
not switch the language. That means you should set it explicitly if you want to use them, or
hyphenation (and in some cases the text itself) will be wrong. For example:

\foreignlanguage{russian}{text \foreignlanguage{polish}{\seename} text}

Of course, TgX can do it for you. To avoid switching the language all the while,
\babelensure redefines the captions for a given language to wrap them with a selector:

\babelensure{polish}

By default only the basic captions and \today are redefined, but you can add further
macros with the key include in the optional argument (without commas). Macros not to be
modified are listed in exclude. You can also enforce a font encoding with the option
fontenc (with it, encoded strings may not work as expected). A couple of examples:

\babelensure[include=\Today]{spanish}
\babelensure[fontenc=T5]{vietnamese}

They are activated when the language is selected (at the afterextras event), and it
makes some assumptions which could not be fulfilled in some languages. Note also you
should include only macros defined by the language, not global macros (e.g., \TeX of \dag).

With ini files (see below), captions are ensured by default.

\AfterBabellLanguage{{option-name)}{(code)}

Executes (code) when the file loaded by the corresponding package option is finished (at
\ldf@finish). The setting is global. So

\AfterBabellLanguage{french}{...}

does ... at the end of french. ldf. It can be used in 1df files, too, but in such a case the
code is executed only if (option-name) is the same as \CurrentOption (which could not be
the same as the option name as set in \usepackage!).

EXAMPLE Consider two languages foo and bar defining the same \macro with
\newcommand. An error is raised if you attempt to load both. Here is a way to overcome
this problem, with the help of the presets hook (which has to be set before loading
babel):

\AddToHook{babel/presets}{%
\AfterBabellLanguage{foo}{%
\let\macroFoo\macro
\let\macro\relax}}
\usepackage[foo, bar]{babel}

NOTE An alternative method to execute some code just after an 1df file is loaded is with
the hook file/{language).1df/after. You can also execute some code before with
file/{language).1df/before.

23

2.2. Accessing language info

\localename
\mainlocalename
\languagename

2410 The control sequence \localename contains the name of the current locale. This
is now the recommended way to retrieve the current language. In addtion,
\mainlocalename contains the main language.

\'languagename is still used internally, but it is now discouraged at the user level.

WARNING Due to a bug, which led to some internal inconsistencies in catcodes,
\languagename should not be used to test which is the current language. Rely on
\localename or, if you still need \ languagename for some reason, on iflang, by Heiko
Oberdiek.

\iflanguage{(language)}{(true)}{(false)}

Here “language” is used in the TgX sense, as a set of hyphenation patterns, and not as its
babel name. The first argument is the name of a language.

\localeinfo * {(field)}

338x Ifan ini file has been loaded for the current language, you may access the
information stored in it. Note with the ‘classical’ 1df files the corresponding ini ones are
also loaded, but only some basic data required for fonts, casing and a few more.
This macro is fully expandable, but raises an error if the info doesn’t exist.

375% Sometimes, it comes in handy to be able to use \localeinfo in a quite fully
expandable way even if something went wrong (for example, the locale currently active is
undefined). For these cases, localeinfo* just returns an empty string instead of raising an
error.

The available fields are:

name.english as provided by the Unicode CLDR.

tag.ini isthe tag of the ini file (the way this file is identified in its name).

tag.bcp47 isthe full BCP 47 tag. This is the value to be used for the ‘real’ provided tag
(babel may fill other fields if they are considered necessary).

language.tag.bcp47 isthe BCP 47 language tag.

tag.opentype is the tag used by OpenType (usually, but not always, the same as BCP 47). It
can be useful when customizing fonts with luaotfload.

script.name , as provided by the Unicode CLDR.

script.tag.bcp47 isthe BCP 47 tag of the script used by this locale. This is a required
field for the fonts to be correctly set up, and therefore it should always be defined.

script.tag.opentype isthe tag used by OpenType (usually, but not always, the same as
BCP 47). It can be useful when customizing fonts with luaotfload.

region.tag.bcp47 isthe BCP 47 tag of the region or territory. Defined only if the locale
loaded actually contains it (e.g., es-MX does, but es doesn’t), which is how locales
behave in the CLDR. 3.75x

variant.tag.bcp47 isthe BCP 47 tag of the variant (in the BCP 47 sense, like 1901 for
German). 3.75x

extension.(s).tag.bcp47 isthe BCP 47 value of the extension whose singleton is (s)
(currently the recognized singletons are x, t and u). The internal syntax can be
somewhat complex, and this feature is still somewhat tentative. An example is
classicallatin which sets extension.x.tag.bcp47 to classic. 375

NOTE Currently, x is used for two separate functions, namely, identifying a babel locale
without a BCP 47 tag and setting an alternative set of rules for casing.

NOTE Bear in mind that babel, following the CLDR, may leave the region unset, which
means \getlocaleproperty*, described below, is the preferred command, so that the

24

https://latex3.github.io/babel/news/whats-new-in-babel-24.10.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.38.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.75.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.75.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.75.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.75.html

existence of a field can be checked before. This also means building a string with the
language and the region with something like \localeinfo*{language.tab.bcp47}-
\localeinfo*{region.tab.bcp47} is not usually a good idea (because of the hyphen).

WARNING 346x% As of version 3.46 tag.bcp47 returns the full BCP 47 tag. Formerly it
returned just the language subtag, which was clearly counterintuitive.

\getlocaleproperty * {{macro)}{(locale)}{{property)}

342% The value of any locale property as set by the ini files (or added/modified with
\babelprovide) can be retrieved and stored in a macro with this command. For example,
after:

\getlocaleproperty\hechap{hebrew}{captions/chapter}

the macro \hechap will contain the string p1o.

If the key does not exist, the macro is set to \relax and an error is raised. 347x With the
starred version no error is raised, so that you can take your own actions with undefined
properties.

\localeid

Each language in the babel sense has its own unique numeric identifier, which can be
retrieved with \localeid.

The \localeid is not the same as the \language identifier, which refers to a set of
hyphenation patterns (which, in turn, is just a component of the line breaking algorithm
described in the next section). The data about preloaded patterns are store in an internal
macro named \bbl@languages (see the code for further details), but note several locales
may share a single \language, so they are separated concepts. In luatex, the \localeid is
saved in each node (when it makes sense) as an attribute, too.

\ShowLocaleProperties{(language)}

398 Prints to the log file all the loaded key/value pairs from the ini locale file for
(language).

\LocaleForEach{{code)}

Babel remembers which ini files have been loaded. There is a loop named
\LocaleForEach to traverse the list, where #1 is the name of the current item, so that
\LocaleForEach{\message{ **#1** }} just shows the loaded ini’s.

2.3. Package options

39a These package options are processed before language options, so that they are taken
into account irrespective of their order. The first three options have been available in
previous versions.

KeepShorthandsActive

Tells babel not to deactivate shorthands after loading a language file, so that they are also
available in the preamble.

headfoot=(language)

By default, headlines and footlines are not touched (only marks), and if they contain
language-dependent macros (which is not usual) there may be unexpected results. With
this option you may set the language in heads and feet. An alternative is to set the language
explicitly when heads and feet are redefined.

25

https://latex3.github.io/babel/news/whats-new-in-babel-3.46.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.42.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.47.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.98.html

noconfigs

Global and language default config files are not loaded, so you can make sure your
document is not spoilt by an unexpected . cfg file. However, if the key config is set, this
file is loaded.

config=(file)

Load (file) . cfg instead of the default config file bblopts.cfg (forced even with
noconfigs).

WARNING 2514% Configuration files are deprecated, as they can break document
portability.

showlanguages

Prints to the log the list of languages loaded when the format was created: number
(remember dialects can share it), name, hyphenation file and exceptions file.

silent

391 No warnings and no infos are written to the log file.!

hyphenmap=off | first | select | other | other*

39¢ Sets the behavior of case mapping for hyphenation, provided the language defines
it.2 It can take the following values:

off deactivates this feature and no case mapping is applied;

first setsit at the first switching commands in the current or parent scope (typically,
when the aux file is first read and at \begin{document}, but also the first
\selectlanguage in the preamble), and it’s the default if a single language option has
been stated. If a language option is repeated (e.g., malay, malay), it counts as several
ones, even if there is only a language.

select setsitonly at \selectlanguage;

other also sets it at otherlanguage;

other* also sets it at otherlanguage* as well as in heads and feet (if the option headfoot
is used) and in auxiliary files (i.e., at \select@language), and it’s the default if several
language options have been stated. The option first can be regarded as an optimized
version of other* for monolingual documents.?

bidi=default | basic | basic-r | bidi-1 | bidi-r

314 Selects the bidi algorithm to be used in luatex and xetex. See sec. 5.10.
layout=

316 Selects which layout elements are adapted in bidi documents. See sec. 5.10.
provide=* | (option-list)

349% An alternative to \babelprovide for languages passed as options. See section 2.5,
which describes also the variants provide+= and provide*=.

1You can use alternatively the package silence.

2Turned off in plain.

3providing foreign is pointless, because the case mapping applied is that at the end of the paragraph, but if
either luatex or xetex change this behavior it might be added. On the other hand, other is provided even if I [JBL]
think it isn’t really useful, but who knows.

26

https://latex3.github.io/babel/news/whats-new-in-babel-25.14.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.49.html

main=(language)

Forces the main language, but this option should not be used except if there a need to do
it. If the language is not given as such as package or global option, it is added to the list of
requested languages. For example:

\documentclass{article}
\usepackage[main=english,dutch]{babel}

Some classes load babel with a hardcoded language option. Sometimes, the main
language can be overridden with something like that before \documentclass:

\PassOptionsToPackage{main=english}{babel}

2.4. The base option

With this package option babel just loads some basic macros (mainly the selectors), defines
\AfterBabellLanguage and exits. It also selects the hyphenation patterns for the last
language passed as option (by its name in language.dat).

WARNING Currently this option is not compatible with languages loaded on the fly.

2.5. provide and \babelprovide - ini files

An alternative approach to define a language (or, more precisely, a locale) is by means of an
ini file. Currently babel provides about 380 of these files containing the basic data
required for a locale, covering about 300 languages and 40 scripts, plus basic templates for
about 400 locales.

ini files are not meant only for babel, and they has been devised as a resource for other
packages. To ease interoperability between TgX and other systems, they are identified with
the BCP 47 codes as preferred by the Unicode Common Locale Data Repository, which was
used as source for most of the data provided by these files, where available.

Most of them set the date, and many also the captions (Unicode and LICR). They will be
evolving with the time to add more features (something to keep in mind if backward
compatibility is important). The following section shows how to make use of them by
means of \babelprovide.

Not all languages in the CLDR are complete, and therefore neither are the ini files. A few
languages may show a warning about the current lack of suitability of some features.

EXAMPLE There is an example of how to use an ini template file here, for Phoenician
(although currently this locale is bundled with babel).

NOTE The ini files just define and set some parameters, but the corresponding behavior
is not always implemented. Also, there are some limitations in the engines. A few
remarks follow (which could no longer be valid when you read this manual, if the
packages involved have been updated).

Arabic Math and graphical elements like picture are complex and requires some
additional fine tuning. In xetex babel resorts to the bidi package, which seems to
work.

Southeast scripts Thai works in both luatex and xetex, but line breaking differs (rules
are hard-coded in xetex, but they can be modified in luatex). Lao seems to work, too,
but there are no patterns for the latter in luatex. Some quick patterns can help, with
something similar to:

\babelprovide[import, hyphenrules=+]{lao}
\babelpatterns[lao]{la lu 18 19 1n 1a} % Random

27

https://github.com/latex3/babel/issues/176#issuecomment-1080846575

East Asia scripts Settings for either Simplified of Traditional (Chinese) should work
out of the box, with basic line breaking with any renderer. Although for a few words
and shorts texts the ini files should be fine, CJK texts are best set with a dedicated
framework (CJK, luatexja, kotex, CTeX, etc.). This is what the class 1tjbook does with
luatex, which can be used in conjunction with the 1df for japanese, because the
following piece of code loads luatexja:

\documentclass[japanese]{ltjbook}
\usepackage{babel}

Latin, Greek, Cyrillic Combining chars with the default luatex font renderer might be
wrong; on the other hand, with the Harfbuzz renderer diacritics are stacked
correctly, but many hyphenations points are discarded (this bug is related to
kerning, so it depends on the font). With xetex both combining characters and
hyphenation work as expected (not quite, but in most cases it works; the problem
here are font clusters).

NOTE Wikipedia defines a locale as follows: “In computing, a locale is a set of parameters
that defines the user’s language, region and any special variant preferences that the
user wants to see in their user interface. Usually a locale identifier consists of at least a
language code and a country/region code.” Babel is moving gradually from the old and
fuzzy concept of language to the more modern of locale. Note each locale is by itself a
separate “language”, which explains why there are so many files. This is on purpose, so
that possible variants can be created and/or redefined easily.

2.6. Selection based on BCP 47 tags

343% The recommended way to select languages is that described at the beginning of this
document. However, BCP 47 tags are becoming customary, particularly in documents (or
parts of documents) generated by external sources, and therefore babel will provide a set
of tools to select the locales in different situations, adapted to the particular needs of each
case. Currently, babel provides autoloading of locales as described in this section. In these
contexts autoloading is particularly important because we may not know beforehand
which languages will be requested.

It must be activated explicitly, because it is primarily meant for special tasks. Mapping
from BCP 47 codes to locale names is not hardcoded in babel. Instead the data is taken from
the ini files, which means currently about 350 tags are already recognized. Babel performs
a simple lookup in the following way: fr-Latn-FR — fr-Latn — fr-FR — fr. Languages
with the same resolved name are considered the same. Case is normalized before, so that
fr-latn-fr — fr-Latn-FR. If a tag and a name overlap, the tag takes precedence.

Here is a minimal example:

\documentclass{article}
\usepackage[danish]{babel}
\babeladjust{

autoload.bcp47 = on
}

\begin{document}

Chapter in Danish: \chaptername.
\selectlanguage{de-AT}
\localedate{2020}{1}{30}

\end{document}

28

https://latex3.github.io/babel/news/whats-new-in-babel-3.43.html

Currently the locales loaded are based on the ini files and decoupled from the main 1df
files. This is by design, to ensure code generated externally produces the same result
regardless of the languages requested in the document, but an option to use the 1df
instead will be added in a future release, because both options make sense depending on
the particular needs of each document (there will be some restrictions, however).

The behavior is adjusted with \babeladjust with the following parameters:

autoload.bcp47 with values on and off.

autoload.bcp47.options, which are passed to \babelprovide; 2414% import by
default (features defined in the corresponding babel- . .. tex file might not be
available), but you can set it to another value (even empty).

autoload.bcp47.prefix. Although the public name used in selectors is the tag, the
internal name will be different and generated by prepending a prefix, which by default
is bcp47-. You may change it with this key.

346x If an ldf file has been loaded, you can enable the corresponding language tags as
selector names with:

\babeladjust{ bcp47.toname = on }

(You can deactivate it with off.) So, if dutch is one of the package (or class) options, you
can write \selectlanguage{nl}. Note the language name does not change (in this
example is still dutch), but you can get it with \localeinfo or \getlocaleproperty.It
must be turned on explicitly for similar reasons to those explained above.

3. Tailoring, customizing and modifying a language

Modifying the behavior of a language (say, the chapter “caption”) is sometimes necessary.
Several language definition files use their own methods to set options. For example,
french uses \frenchsetup, magyar (1.5) uses \magyarOptions; modifiers provided by
spanish have no attribute counterparts. Macros setting options are also used (e.g.,
\ProsodicMarksOn in latin).
This section describes the general tools provided by the babel core.

3.1. Captions
This is perhaps the most frequent change, so a specific macro is provided.
\setlocalecaption{(language-name)}{{caption-name)}{(string)}
351% Here caption-name is the name as string without the trailing name. An example,
which also shows caption names are often a stylistic choice, is:

\setlocalecaption{english}{contents}{Table of Contents}

This works not only with existing caption names, because it also serves to define new
ones by setting the caption-name to the name of your choice (name will be postpended).
Captions so defined or redefined behave with the ‘new way’ described in the following
note.

Note the string should not contain a language selector or changes in the text direction,
which is done by babel when necessary. With arabic, all you need is:

\setlocalecaption{arabic}{part}{ecwsl|}

NOTE There are a few alternative methods:

29

https://latex3.github.io/babel/news/whats-new-in-babel-24.14.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.46.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.51.html

* With data import’ed from ini files, you can modify the values of specific keys when
loaded, like:

\babelprovide[import, captions/listtable = Lista de tablas]{spanish}

(In this particular case, instead of the captions group you may need to modify the
captions.licrone.)

* The low-level ‘old way’ to redefine a caption, still valid for many languages but
discouraged in general, is the following:

\addto\captionsenglish{%
\renewcommand\contentsname{Foo}%

}

As of 3.15, there is no need to hide spaces with % (babel removes them), but it is
advisable to do so. This redefinition is not activated until the language is selected.

* The ‘new way’, which is found in bulgarian, azerbaijani, spanish, french,
turkish, icelandic, vietnamese and a few more, as well as in languages created
with \babelprovide and its key import, or with the package option provide=, is:

\renewcommand\spanishchaptername{Foo}

This redefinition is immediate. In these languages, the month names can be
redefined in a similar way; names are \({language)month(roman-numyname, where
(roman-numy is the month number in lowercase roman (e.g.,
\spanishmonthxiiname).

NOTE Do not redefine a caption in the following way:

\AtBeginDocument{\renewcommand\contentsname{Foo}}

The changes may be discarded with a language selector, and the original value restored.

Macros to be run when a language is selected can be added to \ext ras{language):
\addto\extrasrussian{\mymacro}

There is a counterpart for code to be run when a language is unselected:
\noextras(language).

NOTE These macros (\captions{language), \extras{language)) may be redefined, but
must not be used as such — they just pass information to babel, which executes them in
the proper context.

Another way to modify a language loaded as a package or class option is by means of
\babelprovide, described below in depth. So, something like:

\usepackage[danish]{babel}
\babelprovide[hyphenrules=nohyphenation]{danish}

first loads danish.1df, and then prevents hyphenation for this locale. The rest of the
language definitions are not touched. Without the optional argument it just loads some
additional tools if provided by the ini file, like extra counters.

30

3.2. Modifiers

39¢ The basic behavior of some languages can be modified when loading babel by means
of modifiers. They are set after the language name, and are prefixed with a dot (only when
the language is set as package option — neither global options nor the main key accepts
them). An example is (spaces are not significant and they can be added or removed):*

\usepackage[latin.lowercasemonth, spanish.notilde.lcroman, danish]{babel}

Attributes (described below) are considered modifiers, i.e., you can set an attribute by
including it in the list of modifiers.

3.89% Alternatively, modifiers can be set with a separate option, with the keyword
modifiers followed by a dot and the language name (note the language is not selected or
loaded with this option). It is useful to activate some feature when the language is declared
as a class option:

\documentclass[spanish]{report}
\usepackage[modifiers.spanish = notilde.lcroman]{babel}

3.3. Language attributes
\languageattribute{(language)}

This is a user-level command, to be used in the preamble of a document (after
\usepackage[. ..]{babel}), that declares which attributes are to be used for a given
language. It takes two arguments: the first is the name of the language; the second, a (list
of) attribute(s) to be used. Attributes must be set in the preamble and only once - they
cannot be turned on and off. The command checks whether the language is known in this
document and whether the attribute(s) are known for this language.

3.4. Casing

\BabelUppercaseMapping{{locale-name)}{{codepoint)}{{output)}
\BabelLowercaseMapping{(locale-name)}{{codepoint)}{(output)}
H

\BabelTitlecaseMapping{(locale-name)}{(codepoint)}{{output)}

390% These macros are devised as a high level interface for declaring case mappings,
based on the locale name as declared by or with babel. They are the equivalent of
\DeclareUppercaseMapping, \DeclareLowercaseMapping, and
\DeclareTitlecaseMapping (see usrguide.pdf). The purpose is twofold: (1) a user-friendly
way to declare them, because often BCP 47 tags are not known (and sometimes can be
complex); (2) if for some reason the tag changes (e.g., you decide to tag english as en-001
instead of en-US), the new mappings will still be assigned to that language.

EXAMPLE For Classical Latin (no need to know the tag is la-x-classic):

\BabelUppercaseMapping{classicallatin}{ u}{V}

NOTE There are still some rough edges when declaring a mapping with the x extension, or
when two babel languages share the same BCP 47 tag. These issues are expected be
sorted out in future releases.

4No predefined “axis” for modifiers is provided because languages and their scripts have quite different needs.

31

https://latex3.github.io/babel/news/whats-new-in-babel-3.89.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.90.html

3.5. Modifying and adding values to ini files

339% There is a way to modify or even add values of ini files when they are imported
with \babelprovide or provide=. This can be used to create private variants easily. All
you need is to import the same ini file with a different locale name and different
parameters. Without import you may still modify the identification keys.

Examples of the fine-grained control you have at your disposal are the following. All of
them assume \usepackage[english]{babel}.

EXAMPLE Here is how to change the hyphenation rules because there are several criteria,
or you must follow an editorial style. The following example just uses the default
Spanish rules in English:

\babelprovide[hyphenrules=spanish]{english}

EXAMPLE The required native digits are already defined in the corresponding ini files,
but they can be modified and even added as shown:

\babelprovide[numbers/digits.native=abcdefghij]{english}

This example is somewhat absurd, but now \englishdigits{264} will print ‘cge’. (It
doesn’t work with pdftex.)

EXAMPLE Currently the date format can be changed only with imported data, but with its
high level interface it’s rather straightforward:

\babelprovide[
import,
date.gregorian/date.long = {[d] ([MMMM]) [yl}]
{english}

Here [d] is the day number, [MMMM] the month name and [y] the year. It will print
something like ‘5 (October) 2024’. Remember [d] and [y] admit the syntax
[(period)|{counter)], where {counter) is a counter name as defined in the counters
section. See 344x and the Greek ini files for examples.

EXAMPLE To set the hyphen to ‘none’ (only luatex).

\babelprovide[typography/prehyphenchar = 0]{english}

(This setting may work with xetex, but getting rid of the hyphen char in this engine is
not trivial, because you must rely on the font, and not all fonts behave the same.)

If, on the other hand, the language does not write by default the hyphens when
breaking lines and you want them, you can set typography/prehyphenchar = " - (they
are Kannada, Malayalam, Odia, Sanskrit, Tamil, Telugu).

EXAMPLE You can define new counters freely, and assign them to \alph:

\babelprovide[
counters/acute = 4 é 1 6 U, % Define a counter named ‘acute’
alph = acute % Assign it to \alph
1{english}

You can choose the name, and instead of acute it can be another one.

32

https://latex3.github.io/babel/news/whats-new-in-babel-3.39.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.44.html

3.6. Hooks

39a A hook is a piece of code to be executed at certain events. Some hooks are predefined
when luatex and xetex are used.

364% This is not the only way to inject code at those points. The events listed below can
be used as a hook name in \AddToHook in the form babel/{language-name)/{event-name)
(with * it’s applied to all languages), but there is a limitation, because the parameters
passed with the babel mechanism are not allowed. The \AddToHook mechanism does not
replace the current one in babel. Its main advantage is you can reconfigure babel even
before loading it. See the example below.

\AddBabelHook[(language)1{{name)}{{event)}{(code)}

The same name can be applied to several events. Hooks with a certain {(name)} may be
enabled and disabled for all defined events with \EnableBabelHook{(name)},
\DisableBabelHook{(name)}. Names containing the string babel are reserved (they are
used, for example, by \useshortands* to add a hook for the event afterextras).

333 They may be also applied to a specific language with the optional argument;
language-specific settings are executed after global ones.

Current events are the following; in some of them you can use one to three TgX
parameters (#1, #2, #3), with the meaning given:

adddialect (language name, dialect name) Used by luababel.def to load the patterns if
not preloaded.

patterns (language name, language with encoding) Executed just after the \language has
been set. The second argument has the patterns name actually selected (in the form of
either lang:ENC or lang).

hyphenation (language name, language with encoding) Executed locally just before
exceptions given in \babelhyphenation are actually set.

defaultcommands Used (locally) in \StartBabelCommands.

encodedcommands (input, font encodings) Used (locally) in \StartBabelCommands. Both
luatex and xetex make sure the encoded text is read correctly.

stopcommands Used to reset the above, if necessary.

write This event comes just after the switching commands are written to the aux file.

beforeextras Just before executing \extras(language). This event and the next one
should not contain language-dependent code (for that, add it to \ext ras{language)).

afterextras Just after executing \extras{language). For example, the following
deactivates shorthands in all languages:

\AddBabelHook{noshort}{afterextras}{\languageshorthands{none}}

stringprocess Instead of a parameter, you can manipulate the macro \BabelString
containing the string to be defined with \SetString. For example, to use an expanded
version of the string in the definition, write:

\AddBabelHook{myhook}{stringprocess}{%
\protected@edef\BabelString{\BabelString}}

initiateactive (char as active, char as other, original char) 39i Executed just after a
shorthand has been ‘initiated’. The three parameters are the same character with
different catcodes: active, other (\string’ed) and the original one.

afterreset 391 Executed when selecting a language just after \originalTeXis run and
reset to its base value, before executing \captions{language) and \date(language).

begindocument 3s88x Executed before the code written by 1df files with
\AtBeginDocument. The optional argument with the language in this particular case is
the language that wrote the code. The special value / means ‘return to the core babel
definitions’ (in other words, what follows hasn’t been written by any language).

33

https://latex3.github.io/babel/news/whats-new-in-babel-3.64.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.88.html

foreign 248x Executed by \foreignlanguage after the language has been set up and
just before typesetting the text from the second argument. Its main purpose it to wrap
the text with some code, with the help of \BabelWrapText. For example, with:

\AddBabelHook{one}{foreign}{\BabelWrapText{\textit{##1}}
\AddBabelHook{two}{foreign}{\BabelWrapText{\parse{##1}}

the text becomes \textit{\parse{{text)}}.

EXAMPLE PDF tagging is still a work in progress, but language tags are already
possible in short texts with \foreignlanguage. See the babel site for a complete
explained example.

Four events are used in hyphen. cfg, which are handled in a quite different way for
efficiency reasons — unlike the precedent ones, they only have a single hook and replace a
default definition.

everylanguage (language) Executed before every language patterns are loaded.

loadkernel (file) By default just defines a few basic commands. It can be used to define
different versions of them or to load a file.

loadpatterns (patterns file) Loads the patterns file. Used by luababel. def.

loadexceptions (exceptions file) Loads the exceptions file. Used by luababel. def.

EXAMPLE The generic unlocalized KIEX hooks are predefined, so that you can write:

\AddToHook{babel/*/afterextras}{\frenchspacing}

which is executed always after the extras for the language being selected (and just
before the non-localized hooks defined with \AddBabelHook).

In addition, locale-specific hooks in the form babel/{language-name)/{event-name) are
recognized (executed just before the localized babel hooks), but they are not predefined.
You have to do it yourself. For example, to set \frenchspacing only in bengali:

\ActivateGenericHook{babel/bengali/afterextras}
\AddToHook{babel/bengali/afterextras}{\frenchspacing}

3.7. Manage auxiliary files

\BabelContentsFiles

39a This macro contains a list of “toc” types requiring a command to switch the
language. Its default value is toc, lof, lot, but you may redefine it with \ renewcommand to
add further types in case you need or there is a package enabling additional files, e.g., for
theorems, algorithms, notation (it’s up to you to make sure no toc type is duplicated).

3.8. Code based on the selector

\IfBabelSelectorTF{(selectors)}{(true)}{(false)}

367% Sometimes a different setup is desired depending on the selector used. Values
allowed in (selectors) are select, other, foreign, other* (and also foreign* for the
tentative starred version), and it can consist of a comma-separated list. For example:

\IfBabelSelectorTF{other, other*}{A}{B}

is true with any of these two environment selectors.
Its natural place of use is in hooks or in \ext ras{language).

34

https://latex3.github.io/babel/news/whats-new-in-babel-24.8.html
https://github.com/latex3/babel/discussions/357
https://latex3.github.io/babel/news/whats-new-in-babel-3.67.html

3.9. Presets

2412% Apart from configuration files, which are loaded before the locale files, you can
preset some options even before loading babel. One on the aims of this feature is to ease
the integration with automated document generation or conversion workflows.

\AddToHook{babel/presets}{(settings)}

This EIgX hook is executed just before locale files (either ini or 1df) are loaded. It’s in
fact, similar to the config files, but it’s executed a little later and there is no need for a
separate file. The following command has been devised for this hook, but other candidates
are \AfterBabellLanguage and \DeclareOption (although the latter can be somewhat
dangerous).

Note these declarations are valid ‘just in case’. If babel is not loaded, they are ignored.

\PassOptionsToLocale{({option-1list)}{(locale-name)}

Its purpose is what its name suggests, and it was devised to be used with the previous
hook.

EXAMPLE You are writing a class and expect lazy loading of secondary languages. You also
want to make sure french, if used, activates its rules for punctuation spacing, and
malayalam, if used, maps digits to the native ones (with luatex):

\AddToHook{babel/presets}{%
\PassOptionsToLocale{transforms=punctuation.space}{french}%
\PassOptionsToLocale{mapdigits}{malayalam}}

If you want to take a step further and force babel to always use ini files in all secondary
languages, you can resort to the EIgX mechanism to pass options to packages:

\PassOptionsToPackage{provide+=*}{babel}

NOTE Remember localized fonts are preset, too, with lazy loading. In the previous
example you can set, for example, \babelfont[malayalam]{rm}{FreeSerif}.

4. Creating a language

310 And what if there is no style for your language or none fits your needs? You may then
define quickly a language with the help of the following macro in the preamble (which
may be used to modify an existing language, too, as explained in the previous subsection).

\babelprovide[{options)]{(language-name)}

If the language (language-name) has not been loaded as class or package option and there
are no {options), it creates an “empty” one with some defaults in its internal structure: the
hyphen rules, if not available, are set to the current ones, left and right hyphen mins are
set to 2 and 3. In either case, caption, date and language system are not defined.

If no ini file is imported with import, {language-name) is still relevant because in such a
case the hyphenation and like breaking rules (including those for South East Asian and
CJK) are based on it as provided in the ini file corresponding to that name; the same
applies to OpenType language and script.

Conveniently, some options allow to fill the language, and babel warns you about what to
do if there is a missing string. Very likely you will find alerts like this in the log file:

35

https://latex3.github.io/babel/news/whats-new-in-babel-24.12.html

Package babel Warning: \chaptername not set for 'mylang'. Please,

(babel) define it after the language has been loaded
(babel) (typically in the preamble) with:

(babel) \setlocalecaption{mylang}{chapter}{..}
(babel) Reported on input line 26.

In most cases, you will only need to define a few macros. Note languages loaded on the
fly are not yet available in the preamble.

EXAMPLE If you need a language named arhinish:

\usepackage[danish]{babel}
\babelprovide{arhinish}
\setlocalecaption{arhinish}{chapter}{Chapitula}
\setlocalecaption{arhinish}{refname}{Refirenke}
\babelhyphenmins[arhinish]{2}{2}

EXAMPLE Sometimes treating the IPA as a language makes sense:

\documentclass{article}
\usepackage[english]{babel}
\babelprovide{ipa}
\babelfont[ipa]{rm}{DejaVu Sans}
\begin{document}

Blah \foreignlanguage{ipa}{>:1'dav} Blah.
\end{document}

Then you can define shorthands, transforms (with luatex), interchars (with xetex) and
so on, specific to this new ‘language’.

EXAMPLE Locales with names based on BCP 47 codes can be created with something like:

\babelprovide[import=en-US]{en-US}

Note, however, mixing ways to identify locales can lead to problems. For example, is yi
the name of the language spoken by the Yi people or is it the code for Yiddish?

The main language is not changed (danish in this example). So, you must add
\selectlanguage{arhinish} or other selectors where necessary.

If the language has been loaded as an argument in \documentclass or \usepackage,
then \babelprovide redefines the requested data.

import=(locale-tag)

The (language-tag) is optional. It imports the full data from the ini file corresponding to
the locale being loaded, as set in babel-{locale). tex (wWhere (locale) is the last argument in
\babelprovide), including captions and date (and also line breaking rules in newly
defined languages). Unicode engines load the UTF-8 variants, while 8-bit engines load the
LICR (i.e., with macros like \ ' or \ss) ones.

However, in some cases you may want to load a different ini file. In such a case, you can
set its value.

EXAMPLE For example, the locale ar-DZ is named arabic-algeria. You may prefer the
shorter name arabic if there are no conflicts:

36

\babelprovide[import=ar-DZ]{arabic}

Besides \today, this option defines an additional command for dates: \{language)date,
which takes three arguments, namely, year, month and day numbers. In fact, \today calls
\(language)today, which in turn calls
\(language)date{\the\year}{\the\month}{\the\day}. 344% More convenient is
usually \localedate, which prints the date for the current locale.

hyphenrules=(language- list)

With this option, with a space-separated list of hyphenation rules, babel assigns to the
language the first valid hyphenation rules in the list. For example:

\babelprovide[hyphenrules=chavacano spanish italian]{chavacano}

If none of the listed hyphenrules exist, the default behavior applies. Note in this example
we set chavacano as first option, which can seem redundant, but without it, it would select
spanish even if chavacano exists.

A special value is +, which allocates a new language (in the TgX sense). It only makes
sense as the last value (or the only one; the subsequent ones are silently ignored). It is

mostly useful with luatex, because you can add some patterns with \babelpatterns, as for
example:

\babelprovide[hyphenrules=+]{neo}
\babelpatterns[neo]{al el il ol ul}

In other engines it just suppresses hyphenation (because the pattern list is empty).
358% Another special value is unhyphenated, which is an alternative to
justification=unhyphenated.

main

This valueless option makes the language the main one (thus overriding that set when
babel is loaded).

EXAMPLE Let’s assume your document (luatex or xetex) is mainly in Polytonic Greek but
with some sections in Italian. Then, the first attempt should be:

\usepackage[italian, greek.polytonic]{babel}

But if; say, accents in Greek are not shown correctly, you can try

\usepackage[italian, polytonicgreek, provide=*]{babel}

Remember there is an alternative syntax for the latter:

\usepackage[italian]{babel}
\babelprovide[import, main]{polytonicgreek}

Finally, also remember you might not need to load italian at all if there are only a few
word in this language (see 1.3).

script=(script-name)

315 Sets the script name to be used by fontspec (e.g., Devanagari). Overrides the value
in the ini file. If fontspec does not define it, then babel sets its tag to that provided by the
ini file. This value is particularly important because it sets the writing direction, so you
must use it if for some reason the default value is wrong.

37

https://latex3.github.io/babel/news/whats-new-in-babel-3.44.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.58.html

language=(language- name)

315 Sets the language name to be used by fontspec (e.g., Hindi). Overrides the value in
the ini file. If fontspec does not define it, then babel sets its tag to that provided by the ini
file. Not so important, but sometimes still relevant.

alph=(counter-name)

Assigns to \alph that counter. See the next section.

Alph=(counter-name)

Same for \Alph.
casing=(rules)

390 Selects the casing rules in a few languages. The first ones are predefined by ETgX
(see interface3.pdf), while the following are defined by babel:

Armenian yiwn maps U+0587 to capital ech and yiwn on uppercasing.
German eszett maps the lowercase Eszett to a grofses Eszett.

Greek iota converts the ypogegrammeni (subscript muted iota) to capital iota when
uppercasing.

Latin nouv in classicallatin and medievallatin reverts the default rules, which maps
u < V;uvinecclesiasticallatin and the basic latin locale applies the map u <+ V
(by defaultit’s u <» Uand v <» V).

EXAMPLE For the latter:

\usepackage[greek] {babel}
\babelprovide[casing=iota]{greek}

A few options (only luatex) set some properties of the writing system used by the
language. These properties are always applied to the script, no matter which language is
active. Although somewhat inconsistent, this makes setting a language up easier in most
typical cases.

onchar=ids | fonts | letters

338x% This option is much like an ‘event’ called when a character belonging to the script
of this locale is found (as its name implies, it acts on characters, not on spaces).

This option is particularly useful in pure Unicode multilingual text, because you can
intermingle with no explicit markup differents scripts, each of which with its own
hyphenation rules and font, and even its characteristic writing direction.

There are currently 3 ‘actions’, which can be used at the same time (separated by spaces):

* With ids, both \language and \localeid are set to the values associated with this
locale, affecting the hyphenation rules, as well as any transforms declared for it.

» With fonts, the fonts are switched to those specified for this locale (as set with
\babelfont). Characters assigned to a locale can be customized with
\babelcharproperty.

+ 381% Option letters restricts the ‘actions’ to letters, in the TgX sense (i.e., with catcode
11). Digits and punctuation are then considered part of current locale (as set by a
selector). This option is useful when the main script is non-Latin and there is a
secondary one whose script is Latin.

38

https://latex3.github.io/babel/news/whats-new-in-babel-3.90.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.38.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.81.html

NOTE An alternative approach with luatex and Harfbuzz is the font option
RawFeature={multiscript=auto}. It does not switch the babel language and therefore
the line breaking rules, but in many cases it can be enough.

NOTE There is no general rule to set the font for a punctuation mark, because it is a
semantic decision and not a typographical one. Consider the following sentence: “.S,, g5,
and «. are Persian numbers”. In this case the punctuation font must be the English one,
even if the commas are surrounded by non-Latin letters. Quotation marks, parenthesis,
etc., are even more complex. Several criteria are possible, like the main language (the
default in babel), the first letter in the paragraph, or the surrounding letters, among
others, but even so manual switching can still be necessary.

transforms=(transform-list)

See section 5.7.

interchar=(interchar-list)

See section 5.8.

NOTE (1) If you need shorthands, you can define them with \useshorthands and
\defineshorthand as described above. (2) Captions and \today are “ensured” with
\babelensure (this is the default in ini-based languages).

EXAMPLE When creating a locale from another locale, you may want to reset some
properties, like the BCP 47 tags. Here is an example of how to do it:

\babelprovide{spanish} % import=es by default
\babelprovide[
import=es,
identification/tag.bcp47 = es-x-medieval,
identification/extension.x.tag.bcp47 = medievall
{medievalspanish}

5. Locale features

5.1. Hyphenation and line breaking - 1. Commands

Babel deals with three kinds of line breaking rules: Western, typically the LGC group, South
East Asian, like Thai, and CJK, but support depends on the engine: pdftex only deals with
the former, xetex also with the second one (although in a limited way) and CJK, while luatex
provides basic rules for all of them, as well as additional rules (like Uyghur and Tibetan).
With luatex there are also tools for non-standard hyphenation and line breaking rules,
explained in the next section.

\babelhyphenation[(language), (language), ...1{(exceptions)}

39a Sets hyphenation exceptions for the languages given or, without the optional
argument, for all languages (e.g., proper nouns or common loan words, and of course
monolingual documents). Multiple declarations work much like \hyphenation (last wins),
but language exceptions take precedence over global ones.

It can be used only in the preamble, and exceptions are set when the language is first
selected, thus taking into account changes of \lccodes’s done in \extras{language) as well
as the language-specific encoding (not set in the preamble by default). For example:

\babelhyphenation{Wal-hal-1la Dar-bhan-ga}
Listed words are saved expanded and therefore it relies on the LICR. Of course, it also

works without the LICR if the input and the font encodings are the same, like in Unicode
based engines.

39

NOTE Using \babelhyphenation with Southeast Asian scripts is mostly pointless. But with
\babelpatterns (below) you may fine-tune line breaking (only luatex). For example:

\babelpatterns[thai] {#n2u}

Even if there are no patterns for the language, you can add at least some typical cases.

NOTE Use \babelhyphenation instead of \hyphenation to set hyphenation exceptions in
the preamble before any language is explicitly set with a selector. In the preamble the
hyphenation rules are not always fully set up and an error can be raised.

\babelpatterns[(language), (language), ...1{(patterns)}

som In luatex only,” adds or replaces patterns for the languages given or, without the
optional argument, for all languages. If a pattern for a certain combination already exists,
it gets replaced by the new one.

It can be used only in the preamble, and patterns are added when the language is first
selected, thus taking into account changes of \lccodes’s done in \extras({language) as well
as the language-specific encoding (not set in the preamble by default). Multiple
\babelpatterns’s are allowed.

Listed patterns are saved expanded and therefore it relies on the LICR. Of course, it also
works without the LICR if the input and the font encodings are the same, like in Unicode
based engines.

331 (Only luatex.) With \babelprovide and imported CJK languages, a simple generic
line breaking algorithm (push-out-first) is applied, based on a selection of the Unicode rules
(332 itisdisabled in verbatim mode, or more precisely when the hyphenrules are set to
nohyphenation). It can be activated alternatively by setting explicitly the intraspace.

327 Interword spacing for Thai, Lao and Khmer is activated automatically if a language
with one of those scripts is loaded with \babelprovide. See the sample on the babel
repository. With both Unicode engines, spacing is based on the “current” em unit (the size
of the previous char in luatex, and the font size set by the last \selectfont in xetex).

NOTE With Unicode engines, a line break can happen just before an explicit combining
char (e.g., §, used in Guarani and Filipino, is not included as a combined char and it’s
represented in Unicode as U+0067 U+0303. This issue is not directly related to babel, but
to the hyphenation patterns and/or the font renderer. However, at least with luatex
there is a workaround (change the language name to what you are using):

\babelposthyphenation{guarani}{ | [{0300}-{036F}] }{ remove, {} }

The Lua pattern means ‘a discretionary followed by a character in the range
U+0300-U+0367 (which contains combining chars)’. An alternative to a transform is
\babelpatterns.

\babelhyphenmins * [(language), (language), ...]1{(left)}{(right)}[{hyphenationmin)]

2410 See the news page for the rationale for this command. It sets the corresponding
values for the given languages (all languages without the optional argument). With the star,
the values are also applied immediately (the optional argument and the star are currently
incompatible). The optional argument is available only in luatex.

EXAMPLE You are typesetting a book with wide lines and want to limit the number of
hyphens in all languages:

SWith luatex exceptions and patterns can be modified almost freely. However, this is very likely a task for a
separate package and babel only provides the most basic tools.

40

https://latex3.github.io/babel/news/whats-new-in-babel-24.10.html

\babelhyphenmins{3}{4}

But there is also some 3-column text and you want to be more flexible:

\begin{multicols}{3}
\babelhyphenmins*{2}{3}

\end{multicols}

\babelhyphen * {{type)}
\babelhyphen * {(text)}

39a Itis customary to classify hyphens in two types: (1) explicit or hard hyphens, which
in TgX are entered as -, and (2) optional or soft hyphens, which are entered as \ -. Strictly, a
soft hyphen is not a hyphen, but just a breaking opportunity or, in TgX terms, a
“discretionary”; a hard hyphen is a hyphen with a breaking opportunity after it. A further
type is a non-breaking hyphen, a hyphen without a breaking opportunity.

In TgX, - and \ - forbid further breaking opportunities in the word. This is the desired
behavior very often, but not always, and therefore many languages provide shorthands for
these cases. Unfortunately, this has not been done consistently: for example, "- in Dutch,
Portuguese, Catalan or Danish is a hard hyphen, while in German, Spanish, Norwegian,
Slovak or Russian it is a soft hyphen. Furthermore, some of them even redefine \ -, so that
you cannot insert a soft hyphen without breaking opportunities in the rest of the word.

Therefore, some macros are provided with a set of basic “hyphens” which can be used by
themselves, to define a user shorthand, or even in language files.

* \babelhyphen{soft} and \babelhyphen{hard} are self explanatory.

* \babelhyphen{repeat} inserts a hard hyphen which is repeated at the beginning of the
next line, as done in languages like Polish, Portuguese and Spanish.

» \babelhyphen{nobreak} inserts a hard hyphen without a break after it (even if a space
follows).

* \babelhyphen{empty} inserts a break opportunity without a hyphen at all.

* \babelhyphen{(text)} is a hard “hyphen” using (text) instead. A typical case is
\babelhyphen{/}.

With all of them, hyphenation in the rest of the word is enabled. If you don’t want to
enable it, there is a starred counterpart: \babelhyphen*{soft} (which in most cases is
equivalent to the original \ -), \babelhyphen*{hard}, etc.

Note hard is also good for isolated prefixes (e.g., anti-) and nobreak for isolated suffixes
(e.g., -ism), but in both cases \babelhyphen*{nobreak} is usually better.

There are also some differences with KIgX: (1) the character used is that set for the
current font, while in ITgX it is hardwired to - (a typical value); (2) the hyphen to be used
in fonts with a negative \hyphenchar is -, as in KIgX, but it can be changed to another
value by redefining \babelnullhyphen; (3) a break after the hyphen is forbidden if
preceded by a glue >0 pt (at the beginning of a word, provided it is not immediately
preceded by, say, a parenthesis).

\begin{hyphenrules}{(language)} ... \end{hyphenrules}

The environment hyphenrules can be used to select only the hyphenation rules to be
used (it can be used as command, too). This can for instance be used to select
‘nohyphenation’, provided that in language.dat the language’ nohyphenation is defined
by loading zerohyph. tex. It deactivates language shorthands, too (but not user
shorthands).

41

Except for these simple uses, hyphenrules is deprecated and otherlanguage* (the
starred version) is preferred, because the former does not take into account possible
changes in encodings of characters like, say, ' done by some languages (e.g., italian, french,
ukrainian).

NOTE For the hyphenation to work correctly, lccodes cannot change, because TgX only
takes into account the values when the paragraph is hyphenated, i.e., when it has been
finished.® So, if you write a chunk of French text with \ foreignlanguage, the
apostrophes might not be taken into account. This is a limitation of TgX, not of babel.
Alternatively, you may use \useshorthands to activate ' and \defineshorthand, or
redefine \textquoteright (the latter is called by the non-ASCII right quote).

5.2. Hyphenation and line breaking - 2. ‘Provide’ options

justification=unhyphenated | kashida | elongated | padding

359% There are currently 4 options. Note they are language dependent, so that they will
not be applied to other languages.

The first one (unhyphenated) activates a line breaking mode that allows breaks only at
spaces, which can be stretched to arbitrary amounts. Although for European standards the
result may look odd, in some writing systems, like Malayalam and other Indic scripts, this
has been the customary (although not always the desired) practice. Because of that, no
locale enables currently this mode by default (Amharic is an exception). Unlike \sloppy,
the \hfuzz and the \vfuzz are not changed, because this line breaking mode is not really
‘sloppy’ (in other words, overfull boxes are reported as usual).

The second and the third are for the Arabic script. It sets the linebreaking and
justification method, which can be based on the ARABIC TATWEEL character or in the
‘justification alternatives’ OpenType table (jalt). For an explanation see the babel site.

381% The option padding has been devised primarily for Tibetan. It’s still somewhat
experimental. Again, there is an explanation in the babel site.

linebreaking=

359% Just a synonymous for justification. Depending on the language, this name can
make more sense.

intraspace=(base) (shrink) (stretch)

Sets the interword space for the writing system of the language, in em units (so, 0 .1 0is
Oem plus .lem).Like \spaceskip, the em unit applied is that of the current text (more
precisely, the previous glyph). Currently used only in Southeast Asian scripts, like Thai, and
CJK.

intrapenalty=(penalty)

Sets the interword penalty for the writing system of this language. Currently used only in
Southeast Asian scripts, like Thai. If 0, which is the default value, no penalty is inserted.

5.3. Shorthands - 1. Commands

A shorthand is a sequence of one or two characters that expands to arbitrary TgX code.
Shorthands can be used for different kinds of things; for example: (1) in some languages
shorthands such as "a are defined to be able to hyphenate the word if the encoding is 0T1;
(2) in some languages shorthands such as ! are used to insert the right amount of white
space; (3) several kinds of discretionaries and breaks can be inserted easily with " -, "=, etc.

6This explains why IATgX assumes the lowercase mapping of T1 and does not provide a tool for multiple mappings.
Unfortunately, \savinghyphcodes is not a solution either, because lccodes for hyphenation are frozen in the format
and cannot be changed.

42

https://latex3.github.io/babel/news/whats-new-in-babel-3.59.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.59.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.81.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.81.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.59.html

The package inputenc as well as luatex and xetex have alleviated entering non-ASCII
characters, but minority languages and some kinds of text can still require characters not
directly available on the keyboards (and sometimes not even as separated or precomposed
Unicode characters). As to the point 2, now pdfTeX provides \knbccode, and luatex can
manipulate the glyph list. Tools for point 3 can still be very useful in general.

There are four levels of shorthands: user, language, system, and language user (by order
of precedence). In most cases, you will use only shorthands provided by languages.

NOTE Keep in mind the following:

1. Activated chars used for two-char shorthands cannot be followed by a closing brace
} and the spaces following are gobbled. With one-char shorthands (e.g., :), they are
preserved.

2. If on a certain level (system, language, user, language user) there is a one-char
shorthand, two-char ones starting with that char and on the same level are ignored.

3. Since they are active, a shorthand cannot contain the same character in its definition
(except if deactivated with, e.g., \string).

TROUBLESHOOTING A typical error when using shorthands is the following:

! Argument of \language@active@arg" has an extra }.

It means there is a closing brace just after a shorthand, which is not allowed (e.g., "}).
Just add {} after (e.g., "{}}).

\shorthandon{({shorthands-list)}
\shorthandoff * {(shorthands-1list)}

It is sometimes necessary to switch a shorthand character off temporarily, because it must
be used in an entirely different way. For this purpose, the user commands \shorthandoff
and \shorthandon are provided. They each take a list of characters as their arguments.

The command \shorthandoff sets the \catcode for each of the characters in its
argument to other (12); the command \shorthandon sets the \catcode to active (13). Both
commands work on only ‘known’ shorthand characters, and an error will be raised
otherwise. You can check if a character is a shorthand with \ifbabelshorthand (see
below).

392 However, \shorthandoff does not behave as you would expect with characters like
~or *, because they usually are not “other”. For them \shorthandoff* is provided, so that
with

\shorthandoff*{~"}

~ is still active, very likely with the meaning of a non-breaking space, and * is the
superscript character. The catcodes used are those when the shorthands are defined,
usually when language files are loaded.

If you do not need shorthands, or prefer an alternative approach of your own, you may
want to switch them off with the package option shorthands=off, as described below.

WARNING It is worth emphasizing that these macros are meant for temporary changes.
Whenever possible, shorthands must be always enabled or disabled.

\useshorthands * {{char)}

It initiates the definition of user-defined shorthand sequences. It has one argument, the
character that starts these personal shorthands.

39a User shorthands are not always alive, as they may be deactivated by languages (for
example, if you use " for your user shorthands and switch from german to french, they

43

stop working). Therefore, a starred version \useshorthands*{ (char) } is provided, which
makes sure shorthands are always activated.

If the package option shorthands is used, you must include any character to be activated
with \useshorthands.

\defineshorthand[(language), (language), ...1{(shorthand)}{{code)}

It takes two arguments: the first is a one- or two-character shorthand sequence, and the

second is the code the shorthand should expand to.
39a An optional argument allows to (re)define language and system shorthands (some

languages do not activate shorthands, so you may want to add
\languageshorthands{(language)} to the corresponding \extras(language), as explained
below). By default, user shorthands are (re)defined.

User shorthands override language ones, which in turn override system shorthands.
Language-dependent user shorthands take precedence over “normal” user shorthands.

EXAMPLE Let’s assume you want a unified set of shorthands for discretionaries (languages
do not define shorthands consistently, and " -, \ -, "= have different meanings). You can
start with, say:

\useshorthands*{"}
\defineshorthand{"*}{\babelhyphen{soft}}
\defineshorthand{"-}{\babelhyphen{hard}}

However, the behavior of hyphens is language-dependent. For example, in languages
like Polish and Portuguese, a hard hyphen inside compound words are repeated at the
beginning of the next line. You can then set:

\defineshorthand[*polish,*portuguesel{"-}{\babelhyphen{repeat}}

Here, options with * set a language-dependent user shorthand, which means the
generic declarations above for " - apply to all languages except polish and portuguese;
without * they would (re)define the language shorthands instead, which are overridden
by user ones.

Now, you have a single unified shorthand (" -), with a content-based meaning
(‘compound word hyphen’) whose visual behavior is that expected in each context.

\languageshorthands{(language)}

Used to switch the shorthands on the language level. It takes one argument, the name of a
language or none (the latter does what its name suggests).” Note that for this to work the
language should have been specified as an option when loading the babel package. For
example, you can use in english the shorthands defined by ngerman with

\addto\extrasenglish{\languageshorthands{ngerman}}

(You may also need to activate them as user shorthands in the preamble with, for
example, \useshorthands or \useshorthands*.)

EXAMPLE Very often, this is a more convenient way to deactivate shorthands than
\shorthandoff, for example if you want to define a macro to ease typing phonetic
characters with tipa:

7 Actually, any name not corresponding to a language group does the same as none. However, follow this conven-
tion because it might be enforced in future releases of babel to catch possible errors.

44

\newcommand{\myipa}[1]{{\languageshorthands{none}\tipaencoding#1}}

\babelshorthand{(shorthand)}

With this command you can use a shorthand even if (1) not activated in shorthands (in
this case only shorthands for the current language are taken into account, i.e., not user
shorthands), (2) turned off with \shorthandoff or (3) deactivated with the internal
\bbl@deactivate; for example, \babelshorthand{"u} or \babelshorthand{:}. (You can
conveniently define your own macros, or even your own user shorthands provided they do
not overlap.)

EXAMPLE Since by default shorthands are not activated until \begin{document}, you may
use this macro when defining the \title in the preamble:

\title{Documento cientifico\babelshorthand{"-}técnico}

For your records, here is a list of shorthands, but you must double check them, as they
may change:®

Languages with no shorthands Croatian, English (any variety), Indonesian, Hebrew,
Interlingua, Irish, Lower Sorbian, Malaysian, North Sami, Romanian, Scottish, Welsh

Languages with only " as defined shorthand character Albanian, Bulgarian, Danish,
Dutch, Finnish, German (old and new orthography, also Austrian), Icelandic, Italian,
Norwegian, Polish, Portuguese (also Brazilian), Russian, Serbian (with Latin script),
Slovene, Swedish, Ukrainian, Upper Sorbian

Basque " ' ~

Breton : ; ? !

Catalan " ' °

Czech " -

Esperanto "

Estonian " ~

French (all varieties) : ; ? !

Galician " . ' ~ ()

Greek (ancient, polytonic, only 8-bit TgX) ~, (optional, see the manual for Greek) ;

Hungarian °

Kurmanji

Latin " ~ ' =

Slovak " ~ ' -

Spanish " . () ' ~

Turkish : ! =

In addition, the babel core declares ~ as a one-char shorthand which is let, like the
standard ~, to a non breaking space. Actually, this declaration serves to nothing, but it is
preserved for backward compatibility.

\ifbabelshorthand{(character)}{(true)}{(false)}
323 Tests if a character has been made a shorthand.

NOTE Both Itxdoc and babel use \AtBeginDocument to change some catcodes, and babel
reloads hhline to make sure : has the right one, so if you want to change the catcode of |
it has to be done using the same method at the proper place, with

8Thanks to Enrico Gregorio.

45

\AtBeginDocument{\DeleteShortVerb{\|}}

before loading babel. This way, when the document begins the sequence is (1) make |
active (Itxdoc); (2) make it inactive (your settings); (3) make babel shorthands active
(babel); (4) reload hhline (babel, now with the correct catcodes for | and :).

NOTE Using a character mathematically active (i.e., with math code "8000) as a shorthand
can make TgX enter in an infinite loop in some rare cases. (There is a partial solution.)

5.4. Shorthands - 2. Package options

activeacute
activegrave

For some languages babel supports these options to set ' and °, respectively, as a
shorthand in case it is not done by default.

shorthands=(char){(char)... | off

The only language shorthands activated are those given, like, e.g.:
\usepackage[esperanto, french,shorthands=:;!?]{babel}

If ' isincluded, activeacute is set; if * is included, activegrave is set. Active characters
(like ~) should be preceded by \string (otherwise they will be expanded by EIgX before
they are passed to the package and therefore they will not be recognized); however, t is
provided for the common case of ~ (as well as ¢ for not so common case of the comma).

With shorthands=off no language shorthands are defined. As some languages use this
mechanism for tools not available otherwise, a macro \babelshorthand is defined, which
allows using them; see above.

safe=none | ref | bib

Some KTEX macros are redefined so that using shorthands is safe. With safe=bib only
\nocite, \bibcite and \bibitem are redefined. With safe=ref only \newlabel, \ref and
\pageref are redefined (as well as a few macros from varioref and ifthen).

With safe=none no macro is redefined. This option is strongly recommended, because a
good deal of incompatibilities and errors are related to these redefinitions. As of 334 ,in
e-TgX based engines (i.e., almost every engine except the oldest ones) shorthands can be
used in these macros (formerly you could not).

math=active | normal

Shorthands are mainly intended for text, not for math. By setting this option with the
value normal they are deactivated in math mode (default is active) and things like ${a"'}$
(a closing brace after a shorthand) are not a source of trouble anymore.

5.5. Digits and counters

320 About thirty ini files define a field named digits.native. When it is present, two
macros are created: \(language)digits and \(language)counter (only luatex and xetex).
With the first, a string of ‘Latin’ digits are converted to the native digits of that language;
the second takes a counter name as argument. With the option maparabic in
\babelprovide, \arabic is redefined to produce the native digits.

NOTE maparabic redefines \arabic globally, to avoid inconsistencies in, for example,
page numbering; note as well dates do not rely on \arabic.

46

For example:

\usepackage[telugu]{babel}
% Or also, if you want, with:
% provide={ maparabic }
\babelfont{rm}{Gautami}
\begin{document}
\telugudigits{1234}
\telugucounter{section}
\end{document}

Languages providing native digits in all or some variants are:

Arabic Dzongkha Lao Odia Thai
Assamese Gujarati Maithili Pashto Tibetan
Bangla Haryanvi Malayalam Persian Urdu
Bhojpuri Hindi Manipuri Punjabi Uyghur
Bodo Hmong Njua Marathi Rajasthani Uzbek
Burmese Kannada Mazanderani Sanskrit Vai
Cantonese Kashmiri Nepali Santali

Central Kurdish Khmer Northern Sindhi

Chinese Konkani Kurdish Tamil

Dogri Korean Northern Luri Telugu

330 With luatex there is an alternative approach for mapping digits, namely,
mapdigits. Conversion is based on the language and it is applied to the typeset text (not
math, PDF bookmarks, etc.) before bidi and fonts are processed (i.e., to the node list as
generated by the TgX code). This means the local digits have the correct bidirectional
behavior (unlike Numbers=Arabic in fontspec, which is deprecated).

Another option is the transform digits.native (see 5.7), or the digits style with
\localenumeral and \localecounter (see below).

NOTE With xetex you can use the option Mapping when defining a font.

\localenumeral{(style)}{(number)}
\localecounter{(style)}{(counter)}

341% Many ini locale files provide information about non-positional numerical
systems, based on those predefined in CSS. They only work with luatex and xetex and are
fully expandable (even inside an unprotected \edef). Currently, they are limited to
numbers below 10000.

There are several ways to use them (for the available styles in each language, see the list
below):

* \localenumeral{(style)}{(number)}, like \localenumeral{abjad}{15}
* \localecounter{(style)}{(counter)}, like \localecounter{lower}{section}
* In \babelprovide, as an argument to the keys alph and Alph, which redefine what

\alph and \Alph print. For example:

\babelprovide[alph=alphabetic]{thai}

The styles are:

Ancient Greek lower.ancient, upper.ancient

Ambharic afar, agaw, ari, blin, dizi, gedeo, gumuz, hadiyya, harari, kaffa, kebena,
kembata, konso, kunama, meen, oromo, saho, sidama, silti, tigre,wolaita, yemsa

Arabic abjad, maghrebi.abjad

47

https://latex3.github.io/babel/news/whats-new-in-babel-3.41.html

Armenian lower.letter, upper.letter

Belarusan, Bulgarian, Church Slavic, Macedonian, Serbian lower, upper

Bangla alphabetic

Central Kurdish alphabetic

Chinese cjk-earthly-branch, cjk-heavenly-stem, circled.ideograph,
parenthesized.ideograph, fullwidth.lower.alpha, fullwidth.upper.alpha

Church Slavic (Glagolitic) letters

Coptic epact, lower.letters

French date.day (mainly for internal use).

Georgian letters

Greek lower.modern, upper.modern, lower.ancient, upper.ancient (all with keraia),
lower.modern.nonumeralsign, upper.modern.nonumeralsign (without keraia).

Hebrew letters (393x if the language isloaded explicitly, also letters.plain,
letters.gershayim, letters.final)

Hindi alphabetic

Italian lower.legal, upper.legal

Japanese hiragana, hiragana.iroha, katakana, katakana.iroha, circled.katakana,
informal, formal, cjk-earthly-branch, cjk-heavenly-stem, circled.ideograph,
parenthesized.ideograph, fullwidth.lower.alpha, fullwidth.upper.alpha

Khmer consonant

Korean consonant, syllable, hanja.informal, hanja.formal, hangul.formal,
cjk-earthly-branch, cjk-heavenly-stem, circled.ideograph,
parenthesized.ideograph, fullwidth.lower.alpha, fullwidth.upper.alpha

Marathi alphabetic

Persian abjad, alphabetic

Russian lower, lower. full, upper, upper.full

Syriac letters

Tamil ancient

Thai alphabetic

Ukrainian lower, lower.full, upper, upper.full

345% In addition, native digits (in languages defining them) may be printed with the
numeral style digits.

2512 With mapdot=(text) as an option in ‘provide’, the standard counters (those
starting with \the. . .) are traversed to replace each dot by the provided (text) in a
locale-dependent way. Without a value, a default is used — currenty the only default value
is for the Arabic (ar) locales, which is set to a hyphen (because the zero and the dot are
very similar in this script). See the news page for further details.

5.6. Dates

345% When the data is taken from an ini file, you may print the date corresponding to
the Gregorian calendar and other lunisolar systems with the following command.

\localedate[{calendar=.., variant=.., convert)]{{(year)}{(month)}{{day)}

By default the calendar is the Gregorian, but an ini file may define strings for other
calendars: am (ethiopic), ar and ar-* (islamic), cop (coptic), fa (islamic, persian), he
(hebrew), hi (indian), th (buddhist), and (25.16%) el (julian). In the latter case, the three
arguments are the year, the month, and the day for those in the corresponding calendar.
They are not the Gregorian date to be converted (which means, say, 13 is a valid month
number with calendar=hebrew and calendar=coptic). However, with the option convert
it’s converted (using internally the following command).

Even with a certain calendar there may be variants. In Kurdish the default variant prints
something like 30. Cileya Pésin 2019, but with variant=izafa it prints 31°¢ Cileya Pésiné
2019.

The default calendar for a language can be set in \babelprovide, with the key calendar
(an empty value is the same as gregorian). In this case, \today always converts the date.

48

https://latex3.github.io/babel/news/whats-new-in-babel-3.93.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.45.html
https://latex3.github.io/babel/news/whats-new-in-babel-25.12.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.45.html
https://latex3.github.io/babel/news/whats-new-in-babel-25.16.html

Variants are preceded by a dot, so that calendar = .genitivein serbian \today selects
the date in this variant (more explicitly is gregorian.genitive).

EXAMPLE By default, thai prints the date with \today in the Buddhist calendar, but if you
need a date in the Gregorian one, write:

\localedate[calendar=gregorian]{\year}{\month}{\day}

(Remember \year, \month and \day is the current Gregorian date, so no conversion is
necessary.)

EXAMPLE On the other hand (and following the CLDR), the preferred calendar in most
locales for Arabic is gregorian (in ar-SAis islamic-umalqura), so to set
islamic-civil as the default one:

\babelprovide[import, calendar=islamic-civil]{arabic}

\babelcalendar[{date)]1{{calendar)}{(year-macro)}{month-macro)day-macro)

376 % Although calendars aren’t the primary concern of babel, the package should be
able to, at least, generate correctly the current date in the way users would expect in their
own culture. Currently, \localedate can print dates in a few calendars (provided the ini
locale file has been imported), but year, month and day had to be entered by hand, which is
inconvenient. With this macro, the current date is converted and stored in the three last
arguments, which must be macros. Allowed calendars are:

buddhist ethiopic islamic-umalqura
chinese 394 hebrew julian
coptic islamic-civil persian

The optional argument converts the given date, in the form <year)-(month)-(dayy’,
although for practical reasons most calendars accept only a restricted range of years.
Please, refer to the page on the news for 3.76 in the babel site for further details.

5.7. Transforms

Transforms (only luatex) provide a way to process the text on the typesetting level in
several language-dependent ways, like non-standard hyphenation, special line breaking
rules, script to script conversion, spacing conventions and so on.

NOTE They are similar in concept, but not the same, as those in Unicode. Actually, the
main inspiration for this feature is the Omega transformation processes.

It currently embraces \babelprehyphenation and \babelposthyphenation.

357% Several ini files predefine some transforms. They are activated with the key
transforms in \babelprovide, either if the locale is being defined with this macro or the
languages has been previously loaded as a class or package option, as the following
example illustrates:

\usepackage[hungarian]{babel}
\babelprovide[transforms = digraphs.hyphen]{hungarian}

367% Transforms predefined in the ini locale files can be made attribute-dependent,
too. When an attribute between parenthesis is inserted subsequent transforms will be
assigned to it (up to the list end or another attribute). For example, and provided an
attribute called \withsigmafinal has been declared:

49

https://latex3.github.io/babel/news/whats-new-in-babel-3.76.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.94.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.57.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.67.html

transforms = transliteration.omega (\withsigmafinal) sigma.final

This applies transliteration.omega always, but sigma.final only when
\withsigmafinal is set.
Here are the transforms currently predefined. (A few may still require some fine-tuning.
More to follow in future releases.)

Arabic

Arabic,
Persian

Arabic,
Persian

Chinese,
Japanese

Chinese,
Japanese

Croatian

Croatian,
Czech, Polish,
Portuguese,
Slovak,
Spanish

Czech, Polish,
Slovak
Dutch

Finnish

French

digits.native

transliteration.dad

kashida.base

kashida.plain

input.nospaces

spacing.basic

digraphs.ligatures

hyphen. repeat

oneletter.nobreak

diaeresis.hyphen

prehyphen.nobreak

punctuation.space

249% An alternative to mapdigits, available
in the same locales. This transform is ap-
plied before the first prehyphenation, while
mapdigits is applied after the last posthy-
phenation. Another difference is mapdigits
cannot be disabled in the middle of a para-
graph. (This transform is not declared explic-
itly in ini files. Instead, it’s defined by babel
if the key numbers/digits.native exists.)

Applies the transliteration system devised by
Yannis Haralambous for dad (simple and TgX-
friendly). Not yet complete, but sufficient for
most texts.

394% . Much like the following, but with di-
acritics stacked in the actual base character
and not the kashida extension. With evenly
inserted tatweels results are better.

A very simple and basic transform for ‘plain’
Arabic fonts, which attempts to distribute the
tatweel as evenly as possible (starting at the

end of the line). See the news for version 3.59.

With it, and just for convenience, spaces (and
new lines) in the input are ignored.

Basic rules for readjusting spacing. See
256 % for further details.

Ligatures DZ, DZ, dZ, L], Lj, lj, NJ, Nj, nj. It
assumes they exist. This is not the recom-
mended way to make these transformations
(the best way is with OTF features), but it can
get you out in a hurry.

Explicit hyphens behave like \babelhyphen
{repeat}.

Converts a space after a non-syllabic prepo-
sition or conjunction into a non-breaking
space.

Removes the diaeresis above a vowel if hy-
phenated just before.

Line breaks just after hyphens prepended to
words are prevented, as in “pakastekaapit ja
-arkut”.

Rules for proper spacing with characters
;:?«» are applied.

50

https://latex3.github.io/babel/news/whats-new-in-babel-24.9.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.94.html
https://latex3.github.io/babel/news/whats-new-in-babel-25.6.html

German

Greek

Greek

Greek

Hebrew,
Yiddish,
Ladino,
Ancient
Hebrew

Hebrew,
Yiddish,
Ladino,

Ancient
Hebrew

Hindi, Sanskrit
Hindi, Sanskrit
Hindi, Sanskrit

Hungarian

Indic scripts

Japanese

Latin

Latin
Latin

Russian

longs.unifraktur

diaeresis.hyphen

transliteration.omega

sigma.final

transliteration.cj

justification.interletter

punctuation.space

transliteration.hk

transliteration.iast

digraphs.hyphen

danda.nobreak

linebreak.strict

digraphs.ligatures

letters.noj

letters.uv

transliteration.gost779b

Implements the basic heuristic rules for the
long s () from those in Unifraktur Magun-
tia. Although discretionaries aren’t taken into
account, the transform is declared in the
posthyphenation group, to ease if necessary
fine tuning the rules for, e.g., prefixes and
compound words. They are available in all
German locales. See 255% for further details
and an example.

Removes the diaeresis above iota and upsilon
if hyphenated just before. It works with the
three variants.

Although the provided combinations are not
the full set, this transform follows the syn-
tax of Omega: = for the circumflex, v for
digamma, and so on. For better compatibility
with Levy’s system, ~ (as ‘string’) is an alter-
native to =. ' is tonos in Monotonic Greek, but
oxia in Polytonic and Ancient Greek.

The transliteration system above does not
convert the sigma at the end of a word (on
purpose). This transform does it. To prevent
the conversion (an abbreviation, for exam-
ple), write "s.

A transliteration system based on that de-
vised by Christian Justen for ‘cjhebrew‘. Fi-
nal letters are not converted, and the furtive
patah is not shifted.

Hebrew justification is based on varia-
tions in the spacing between individual let-
ters within words. This transform activates
this justification method. See 258x for fur-
ther details and an example.

Inserts a space before the following four
characters: /?:;.

The Harvard-Kyoto system to romanize De-
vanagari.

The IAST system to romanize Devanagari
(thanks to Maximilian Mehner).

Hyphenates the long digraphs ccs, ddz, ggy,
lly, nny, ssz, tty and zzs as cs-cs, dz-dz, etc.

Prevents a line break before a danda or
double danda if there is a space. For As-
samese, Bangla, Gujarati, Hindi, Kannada,
Malayalam, Marathi, Odia, Tamil, Telugu.

Prevents line breaks before small kana vari-
ants.

Replaces the groups ae, AE, oe, OE with e, £,
o, (E.

Replaces j, J with i, I.
Replaces v, U with u, V.

The GOST 7.79-2000 System B for the ro-
manization of Russian. 25.10 x

51

https://latex3.github.io/babel/news/whats-new-in-babel-25.5.html
https://latex3.github.io/babel/news/whats-new-in-babel-25.8.html
https://latex3.github.io/babel/news/whats-new-in-babel-25.10.html

Serbian transliteration.gajica (Note serbian with ini files refers to the
Cyrillic script, which is here the target.) The
standard system devised by Ljudevit Gaj.

\babelposthyphenation[{options)]1{(hyphenrules-name)}{(lua-pattern)}{(replacement)}

3.37-339% With luatex it is possible to define non-standard hyphenation rules, like f-f —
ff-f, repeated hyphens, ranked ruled (or more precisely, ‘penalized’ hyphenation points),
and so on. A few rules are currently provided (see above), but they can be defined as shown
in the following example, where {1} is the first captured char (between () in the pattern):

\babelposthyphenation{german}{([fmtrpl) | {1}}

{
{ no = {1}, pre = {1}{1}- }, % Replace first char with disc
remove, % Remove automatic disc (2nd node)
{} % Keep last char, untouched

}

In the replacements, a captured char may be mapped to another, too. For example, if the
first capture reads ([{0]), the replacement could be {1]{%| {0}, which maps i to i, and ¥
to U, so that the diaeresis is removed.

This feature is activated with the first \babelposthyphenation or
\babelprehyphenation.

3.67% With the optional argument you can associate a user-defined transform to an
attribute, so that it’s active only when it’s set (currently its attribute value is ignored). With
this mechanism transforms can be set or unset even in the middle of paragraphs, and
applied to single words. To define, set and unset the attribute, the EIgX kernel provides the
macros \newattribute, \setattribute and \unsetattribute. The following example
shows how to use it, provided an attribute named \latinnoj has been declared:

\babelprehyphenation[attribute=\latinnoj]{latin}{ J }{ string = I }

See the babel site for a more detailed description and some examples. It also describes a
few additional replacement types (string, penalty).

385% Another option is label, which takes a value similar to those in \babelprovide
key transforms (in fact, the latter just applies this option). This label can be used to turn
on and off transforms with a higher level interface, by means of \enablelocaletransform
and \disablelocaletransform (see below).

385% When used in conjunction with label, this key makes a transform font dependent.
As an example, the rules for Arabic kashida can differ depending on the font design. The
value consists in a list of space-separated font tags:

\babelprehyphenation[label=transform.name, fonts=rm sfl{..}{..}

Tags can adopt two forms: a family, such as rm or tt, or the set family/series/shape. If a
font matches one of these conditions, the transform is enabled. The second tag in
rm rm/n/it is redundant. There are no wildcards; so, for italics you may want to write
something like sf/m/it sf/b/it.

Transforms set for specific fonts (at least once in any language) are always reset with a
font selector.

In \babelprovide, transform labels can be tagged before their name, with a list
separated with colons, like:

transforms = rm:sf:transform.name
Tranforms are executed in the same order they are declared. 259% They can be also

added at the beginning with the key prepend, which is particularly useful with predefined
transforms. For example:

52

https://latex3.github.io/babel/news/whats-new-in-babel-3.37.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.67.html
https://latex3.github.io/babel/guides/non-standard-hyphenation-with-luatex.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.85.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.85.html
https://latex3.github.io/babel/news/whats-new-in-babel-25.9.html

\babelprehyphenation[prepend]{hebrew}{-}{ string = - } % hyphen to maqgaf

Although the main purpose of post-hyphenation transforms was non-standard
hyphenation, they may actually be used for other transformations (for example, rules for
long s in German).

\babelprehyphenation[{options)]{(locale-name)}{{lua-pattern)}{(replacement)}

3.443-52% It is similar to the latter, but (as its name implies) applied before hyphenation,
which is particularly useful in transliterations. There are other differences: (1) the first
argument is the locale instead of the name of the hyphenation patterns; (2) in the search
patterns = has no special meaning, while | stands for an ordinary space; (3) in the
replacement, discretionaries are not accepted.

See the description above for the optional argument.
This feature is activated with the first \babelposthyphenation or
\babelprehyphenation.

EXAMPLE You can replace a character (or series of them) by another character (or series
of them). Thus, to enter Z as zh and s as sh in a newly created locale for transliterated
Russian:

\babelprovide[hyphenrules=+]{russian-latin} % Create locale
\babelprehyphenation{russian-latin}{([sz])h} % Create rule
{

string = {1|sz|s$z},

remove
}

EXAMPLE The following rule prevent the word “a” from being at the end of a line:

\babelprehyphenation{english}{|a|}

{3, {} % Keep first space and a
{ insert, penalty = 10000 }, % Insert penalty
{} % Keep last space

}

NOTE With luatex there is another approach to make text transformations, with the
function fonts.handlers.otf.addfeature, which adds new features to an OTF font
(substitution and positioning). These features can be made language-dependent, and
babel by default recognizes this setting if the font has been declared with \babelfont.
The transforms mechanism supplements rather than replaces OTF features.

With xetex, where transforms are not available, there is still another approach, with
font mappings, mainly meant to perform encoding conversions and transliterations.
Mappings, however, are linked to fonts, not to languages.

\enablelocaletransform{(label)}
\disablelocaletransform{(label)}

385% Enables and disables the transform with the given label in the current language.
Font dependent transforms are always enabled and cannot be disabled.

\SetTrasformValue{(locale-name)}{{variable-name)}{(value)}

This command allows adjustments (specifically numeric parameters in prehyphenation)
in transform, which can be useful in those predeclared in ini files. Something like
{<variable-name>|<default>} employs the variable as set by this macro. The following
variables are currently defined:

53

https://latex3.github.io/babel/news/whats-new-in-babel-3.44.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.85.html

* For French and punctuation.space: guillemet.natural, guillemet.plus,
guillemet.minus, colon.natural, colon.plus, colon.minus, high.natural,
high.plus, high.minus. A value of 1 is the current ordinary space. 24.13x

* For languages in the Hebrew script and justification.interletter:
interletter.plus, which sets the factor for the glue ‘plus’ value. By default, .5. 25.8:

* For Japanese and linebreak.strict: small.natural, small.plus and small.minus.
They are set when the transform is activated to the intraspace values. In addition, the
penalty, by default 10000, can be set with small.penalty. 2414

EXAMPLE With:

\SetTransformValue{french}{colon.natural}{.8}

the natural spacing with the colon is made slightly smaller (default is 1).

\ShowBabelTransforms{(string)}

257 Applies the current transforms to the string and shows in the log the
transformations performed. Don’t rely on the current format, because it may change. In
the process, penalties, discretionaries, etc., can be inserted, which are currently printed as
a boxed ‘7, as a boxed ‘US’ (because it’s the ‘unit separator’) or in another way. With this
macros you can better understand what’s going on, so that you can debug the transform:s.
Use it only in the document body.

5.8. Support for xetex interchar

397% A few macros are provided to deal with locale dependent inter-character rules (aka
‘interchar’).

\babelcharclass{(locale)}{(name)}{(char-1list)}

Declares a new character class, which is assigned to the characters in {(char-list)},
entered either as characters or in macro form (e.g., \}). If you need to enter them by their
numeric value, use the TgX ~-notation (e.g., ~*""1fa0). Ranges are allowed, with a hyphen
(e.g., .,;a-zA-2). If you need the hyphen to be assigned a class, write it at the very
beginning of the list.

There are several predefined ‘global’ classes, namely default, cjkideogram,
cjkleftpunctuation, cjkrightpunctuation, boundary, and ignore, which are described
in the xetex manual. These classes are used by the linebreak.basic, described below.

\babelinterchar[{options)]{(locale)} {(class-first)}{(class-second)}{(code)}

{(class-first)} and {(class-second)} can be comma separated lists of char classes, and all
combinations are defined (so that 2 first classes with 2 second classes, define 4
combinations). In the (options) field a key named label is available, which allows to enable
or to disable the rule with the following two commands. Like prehyphenation transforms
in luatex, interchars are not applied if the current hyphenation rules are nohyphenation.

\enablelocaleinterchar{(label)}
\disablelocaleinterchar{(label)}

Enable or disable the interchar rules with the given label for the current language.

EXAMPLE Not very useful, but illustrative (taken from the unfortunately obsolete
interchar package, by Zou Ho), to colorize the letters ‘X’ and ‘y’ (this way to group text is
usually not a good idea, however).

54

https://latex3.github.io/babel/news/whats-new-in-babel-24.13.html
https://latex3.github.io/babel/news/whats-new-in-babel-25.8.html
https://latex3.github.io/babel/news/whats-new-in-babel-24.14.html
https://latex3.github.io/babel/news/whats-new-in-babel-25.7.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.97.html

\usepackage{color}

\babelcharclass{english}{colored}{xy}

\babelinterchar{english}{default, boundary}{colored}{\bgroup\color{red}}
\babelinterchar{english}{colored}{default, boundary}{\egroup}

A more realistic example follows, which inserts a thin space between a digit and a
percent sign. Note the former is entered as a range, and the latter in command form:

\babelcharclass{english}{digit}{0-9}
\babelcharclass{english}{percent}{\%}
\babelinterchar[label=percent]{english}{digit}{percent}{\,}

WARNING Keep in mind two points: (1) a character can be assigned a single class; this is a
limitation in the interchar mechanisms that often leads to incompatibilities; (2) since
the character classes set with \babelcharclass are saved (so that they can be restored),
there is a limit in the number of characters in the {{char-list) } (which, however, must
be large enough for many uses).

interchar=(interchar-list)

241 This key in \babelprovide activates predefined rules for the ‘provided’ locale.
Currently the following interchar’s are defined:

Cantonese, linebreak.basic 244% Basic settings for CJK defined in (plain)
Chinese, xetex. See the linked news page for details.
Japanese,

Korean

French punctuation.space Rules for proper spacing with characters

;:1?«» are applied.

WARNING This feature requires import.

NOTE You can use transforms and interchar at the same time. Only the relevant key for
the current engine is taken into account.

5.9. Scripts

Babel provides no standard interface to select scripts, because they are best selected with
languages tied to them. In pdftex, scripts are indirectly managed by means of the low-level
\fontencoding, whose direct use is discouraged — even the Latin script may require
different encodings (i.e., sets of glyphs) depending on the language, and therefore such a
switch would be in a sense incomplete. Note the so-called Unicode fonts (in luatex and
xetex) do not improve the situation either. So, a font suited for Vietnamese is not
necessarily suited for, say, the romanization of Indic languages, and the fact it contains
glyphs for Modern Greek does not mean it includes them for Classic Greek.

NOTE Some languages sharing the same script define macros to switch it (e.g.,
\textcyrillic), but be aware they may also set the language to a certain default. Even
the babel core defined \textlatin, but it was somewhat buggy because in some cases it
messed up encodings and fonts (for example, if the main Latin encoding was LY1), and
therefore it has been deprecated (but still defined for backwards compatibility).

The locales currently available cover the following scripts:

55

https://latex3.github.io/babel/news/whats-new-in-babel-24.1.html
https://latex3.github.io/babel/news/whats-new-in-babel-24.4.html

Arabic Greek Myanmar Tamil
Armenian Gujarati Nyiakeng Puachue Telugu
Bangla Gurmukhi Hmong Thaana
Bengali Han N’Ko Thai
Cherokee Hebrew Ol Chiki Tibetan
Coptic Japanese Old Church Slavonic Tifinagh
Cyrillic Kannada Cyrillic Traditional
Devanagari Khmer Oriya Unified Canadian
Egyptian Khojki Phoenician Aboriginal Syllabics
hieroglyphs Khudawadi Runic Vai
Ethiopic Korean Simplified Yi
Georgian Lao Sinhala
Glagolitic Latin Sumero-Akkadian
Gothic Malayalam Cuneiform
\ensureascii{(text)}

39i This macro makes sure (text) is typeset with a LICR-savvy encoding in the ASCII
range. It is used to redefine \TeX and \LaTeX so that they are correctly typeset even with
LGR or X2 (the complete list is stored in \BabelNonASCII, which by default is LGR, LGI, X2,
0T2, 0T3, 0T6, LHE, LWN, LMA, LMC, LMS, LMU, but you can modify it). So, in some sense it fixes
the bug described in the previous paragraph.

If non-ASCII encodings are not loaded (or no encoding at all), it is no-op (also \TeX and
\LaTeX are not redefined); otherwise, \ensureascii switches to the encoding at the
beginning of the document if ASCII-savvy, or else the last ASCII-savvy encoding loaded. For
example, if youload LY1, LGR, then it is set to LY1, but if you load LY1, T2A it is set to T2A.
The symbol encodings TS1, T3, and TS3 are not taken into account, since they are not used
for “ordinary” text (they are stored in \BabelNonText, used in some special cases when no
Latin encoding is explicitly set).

The foregoing rules (which are applied “at begin document”) cover most of the cases. No
assumption is made on characters above 127, which may not follow the LICR conventions —
the goal is just to ensure most of the ASCII letters and symbols are the right ones.

5.10. Bidirectional and right-to-left text

No macros to select the writing direction are provided, either — writing direction is
intrinsic to each script and therefore it is best set by the language (which can be a dummy
one). Furthermore, there are in fact two right-to-left modes, depending on the language,
which differ in the way ‘weak’ numeric characters are ordered (e.g., Arabic %123 vs
Hebrew 123%).

WARNING The current code for text in luatex should be considered essentially stable, but,
of course, it is not bug-free and there can be improvements in the future, because
setting bidi text has many subtleties (see for example
<https://www.w3.org/TR/html-bidi/>). A basic stable version for other engines must wait.
This applies to text; there is a basic support for graphical elements, including the
picture environment (with pict2e) and pfg/tikz. Also, indexes and the like are under
study, as well as math (there are progresses in the latter, including amsmath and
mathtools too, but for example gathered may fail).

An effort is being made to avoid incompatibilities in the future (this one of the reasons
currently bidi must be explicitly requested as a package option, with a certain bidi
model, and also the layout options described below).

WARNING If characters to be mirrored are shown without changes with luatex, try with
the following line:

\babeladjust{bidi.mirroring=o0ff}

There are some package options controlling bidi writing.

56

bidi=default | basic | basic-r | bidi-1 | bidi-r

314 Selects the bidi algorithm to be used.

With default the bidi mechanism is just activated (by default it is not), but every change
must be marked up. In pdftex this is the only option. If the RL text consists of only letters
and punctuation, it will be fine in most cases, but numbers, for example, will be rendered
in the wrong order.

In luatex, the preferred method is basic, which supports both L and R text. basic-r was
a first attempt to create a bidi algorithm and provides a simple and fast method for R text
in some typical cases. (They are named basic mainly because they consider only the
intrinsic direction of scripts and weak directionality.)

In xetex, bidi-r and bidi-1 resort to the package bidi (by Vafa Khalighi). For RL
documents use the former, and for LR ones use the latter.

WARNING The package bidi patches heavily lots of macros and packages even if the RL
script is not the main one, which can lead to some surprising results, so for short and
simple texts (letters and punctuation) the default method is more often than not much
preferable.

As of January 2026 the actual maintenance status of this package is unclear, so it’s
advisable to move to luatex, whose bidi algorithm is an integral part of babel, and
therefore doesn’t rely on external packages.

There are samples on GitHub, under /required/babel/samples. See particularly
lua-bidibasic.tex and lua-secenum. tex.

EXAMPLE The following text comes from the Arabic Wikipedia (article about Arabia).
Copy-pasting some text from the Wikipedia is a good way to test this feature. Remember
basic is available in luatex only.

\documentclass[arabic]{article}
\usepackage[bidi=basic]{babel}
\babelfont{rm}{FreeSerif}

\begin{document}

— (i Y1) i lig Il el alib oot 802 ari cd,e ab,

oW olog,dl posiwl . (ApaBia awa, ,eYL) Aravia oI Arabia

Lo | Y] vanssdl ouad] awiv go gblieo &Y ole “Arabia”_ oUsL
oot aule oyei lao ST oo IS Taaya>

\end{document}
EXAMPLE With bidi=basic both L and R text can be mixed without explicit markup (the
latter will be necessary only in some special cases where the Unicode algorithm fails). It
is used much like bidi=basic- r, but with R text inside L text you may want to map the

font so that the correct features are in force. This is accomplished with an option in
\babelprovide, as illustrated:

\documentclass{book}
\usepackage[english, bidi=basic]{babel}
\babelprovide[onchar=ids fonts]{arabic}

\babelfont{rm}{Crimson}
\babelfont[*arabic]{rm}{FreeSerif}

57

\begin{document}

Most Arabic speakers consider the two varieties to be two registers
of one language, although the two registers can be referred to in
Arabic as _wesd| =9 \textit{fusha 1-‘asr} (MSA) and

ol udl sed \textit{fusha t-turath} (CA).

\end{document}

In this example, and thanks to onchar=ids fonts, any Arabic letter (because the
language is arabic) changes its font to that set for this language (here defined via
*arabic, because Crimson does not provide Arabic letters).

NOTE Boxes are “black boxes”. Numbers inside an \hbox (for example in a \ref) do not
know anything about the surrounding chars. So, \ref{A}-\ref{B} are not rendered in
the visual order A-B, but in the wrong one B-A (because the hyphen does not “see” the
digits inside the \hbox’es). If you need \ref ranges, the best option is to define a
dedicated macro like this (to avoid explicit direction changes in the body; here \texthe
must be defined to select the main language):

\newcommand\refrange[2]{\babelsublr{\texthe{\ref{#1}}-\texthe{\ref{#2}}}}

In the future a more complete method, reading recursively boxed text, may be added.

layout=sectioning | counters | lists | contents | footnotes | captions |

columns | graphics | extras | pars | nopars

316 To be expanded. Selects which layout elements are adapted in bidi documents,
including some text elements (except with options loading the bidi package, which
provides its own mechanism to control these elements). You may use several options with a
space-separated list, like layout=counters contents sectioning (in 385x% spaces are to
be preferred over dots, which was the former syntax). This list will be expanded in future
releases. Note not all options are required by all engines.

sectioning makes sure the sectioning macros are typeset in the main language, but with
the title text in the current language (see below \BabelPatchSection for further
details).

counters required in all engines to reorder section numbers and the like (e.g.,
(subsection).{section)); required in xetex and pdftex for counters in general, as well as in
luatex with bidi=default; required in luatex for numeric footnote marks >9 with
bidi=basic-r (but not with bidi=basic); note, however, it can depend on the counter
format.

With counters, \arabic is not only considered L text always (with \babelsublr, see
below), but also an “isolated” block which does not interact with the surrounding chars.
So, while 1.2 in R text is rendered in that order with bidi=basic (as a decimal
number), in \arabic{cl}.\arabic{c2} the visual order is c2.c1. Of course, you may
always adjust the order by changing the language, if necessary.

384% Since \thepage is (indirectly) redefined, makeindex will reject many entries as
invalid. With counters* babel attempts to remove the conflicting macros.
lists required in xetex and pdftex, but only in bidirectional (with both R and L
paragraphs) documents in luatex.

WARNING As of April 2019 there is a bug with \parshape in luatex (a TgX primitive)
which makes lists to be horizontally misplaced if they are inside a \vbox (like
minipage) and the current direction is different from the main one. A workaround
is to restore the main language before the box and then set the local one inside.

58

https://latex3.github.io/babel/news/whats-new-in-babel-3.85.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.84.html

contents required in xetex and pdftex; in luatex toc entries are R by default if the main
language is R.

columns required in xetex and pdftex to reverse the column order (currently only the
standard two-column mode); in luatex they are R by default if the main language is R
(including multicol).

footnotes not required in monolingual documents, but it may be useful in bidirectional
documents (with both R and L paragraphs) in all engines, as well as in multilingual
documents in general; you may use alternatively \BabelFootnote described below
(what this option does exactly is also explained there).

captions issimilar to sectioning, but for \caption; not required in monolingual
documents with luatex, but may be required in xetex and pdftex in some styles (support
for the latter two engines is still experimental) 3.8

tabular required in luatex for R tabular, so that the first column is the right one (it has
been tested only with simple tables, so expect some readjustments in the future);
ignored in pdftex or xetex (which will not support a similar option in the short term). It
patches an internal command, so it might be ignored by some packages and classes (or
even raise an error). 3.8

graphics modifies the picture environment so that the whole figure is L but the text is R.
It does not work with the standard picture, and pict2e is required. It attempts to do the
same for pgf/tikz. Somewhat experimental. 3.32

extras isused for miscellaneous readjustments which do not fit into the previous groups.
Currently redefines in luatex \underline and \LaTeX2e 3.9

pars, nopars When layout is used with any options in bidi documents, there are a few
changes in \@hangfrom and also (only xetex, as it’s unnecesary in luatex) in
\raggedright and \raggedleft. Using pars applies these adjustments even without
other options; conversely, nopars prevents these adjustments even when other options
are specified 25.9x

EXAMPLE Typically, in an Arabic document you would need:

\usepackage[bidi=basic,
layout=counters tabular]{babel}
or

\usepackage[bidi=bidi,
layout=counters tabular]{babel}

\babelsublr{(lr-text)}

Digits in pdftex must be marked up explicitly (unlike luatex with bidi=basic or
bidi=basic-r and, usually, xetex). This command is provided to set {(Ir-text)} in L mode if
necessary. It’s intended for what Unicode calls weak characters, because words are best set
with the corresponding language. For this reason, there is no rl counterpart.

Any \babelsublr in explicit L mode is ignored. However, with bidi=basic and implicit L,
it first returns to R and then switches to explicit L. To clarify this point, consider, in an R
context:

RTL A ltr text \thechapter{} and still ltr RTL B

There are three R blocks and two L blocks, and the order is RTL B and still Itr 1 ltr text RTL
A. This is by design to provide the proper behavior in the most usual cases — but if you
need to use \ref in an L text inside R, the L text must be marked up explicitly; for example:

RTL A \foreignlanguage{english}{ltr text \thechapter{} and still ltr} RTL B

59

https://latex3.github.io/babel/news/whats-new-in-babel-25.9.html

\localerestoredirs

386% LuaTeX. This command resets the internal text, paragraph and body directions to
those of the current locale (if different). Sometimes changing these values directly can be
useful for some hacks, and this command helps in restoring the directions to the correct
ones. It can be used in > arguments of array, too.

\BabelPatchSection{(section-name)}

Mainly for bidi text, but it can be useful in other cases. \BabelPatchSection and the
corresponding option layout=sectioning takes a more logical approach (at least in many
cases) because it applies the global language to the section format (including the
\chaptername in \chapter), while the section text is still the current language. The latter is
passed to tocs and marks, too, and with sectioning in layout they both reset the “global”
language to the main one, while the text uses the “local” language.

With layout=sectioning all the standard sectioning commands are redefined (it also
“isolates” the page number in heads, for a proper bidi behavior), but with this command
you can set them individually if necessary (but note then tocs and marks are not touched).

\BabelFootnote{{cmd)}{(local-language)}{(before)}{(after)}

317 Something like:
\BabelFootnote{\parsfootnote}{\localename}{(}{)}

defines \parsfootnote so that \parsfootnote{note} is equivalent to:
\footnote{(\foreignlanguage{\localename}{note})}

but the footnote itself is typeset in the main language (to unify its direction as well as the
footnote mark). In addition, \parsfootnotetext is defined. The option footnotes just
does the following:

\BabelFootnote{\footnote}{\localename}{}{}%
\BabelFootnote{\localfootnote}{\localename}{}{}%
\BabelFootnote{\mainfootnote}{}{}{}

(which also redefine \footnotetext and define \localfootnotetext and
\mainfootnotetext). If the language argument is empty, then no language is selected
inside the argument of the footnote. (259 Formerly only available in bidi documents and
Unicode engines, now it’s always available in all engines.)

EXAMPLE If you want to preserve directionality in footnotes and there are many footnotes
entirely in English, you can define:

\BabelFootnote{\enfootnote}{english}{}{.}

It adds a period outside the English part, so that it is placed at the left in the last line.
This means the dot at the end of the footnote text should be omitted.

5.11. Unicode character properties in luatex

332 Part of the babel job is to apply Unicode rules to some script-specific features based
on some properties. Currently, they are 3, namely, direction (i.e., bidi class), mirroring
glyphs, and line breaking for CJK scripts. These properties are stored in lua tables, which
you can modify with the following macro (for example, to set them for glyphs in the PUA).

60

https://latex3.github.io/babel/news/whats-new-in-babel-3.86.html
https://latex3.github.io/babel/news/whats-new-in-babel-25.9.html

\babelcharproperty{{char-code)}[{to-char-code)l{(property)}{(value)}

332 Here, {(char—code)} is a number (with TgX syntax). With the optional argument, you
can set a range of values. There are three properties (with a short name, taken from
Unicode): direction (bc), mirror (bmg), Linebreak (lb). The settings are global, and this
command is allowed only in vertical mode (the preamble or between paragraphs).

For example:

\babelcharproperty{ é}{mirror}{ ?}
\babelcharproperty{" -}{direction}{1} % or al, r, en, an, on, et, cs
\babelcharproperty{")}{linebreak}{cl} % or id, op, cl, ns, ex, in, hy

Please, refer to the Unicode standard (Annex #9 and Annex #14) for the meaning of the
available codes. For example, en is ‘European number’ and id is ‘ideographic’.

339% Another property is locale, which adds characters to the list used by onchar in
\babelprovide, or, if the last argument is empty, removes them. The last argument is the
locale name:

\babelcharproperty{ ,}{locale}{english}

5.12. Tweaking some babel features

\babeladjust{(key-value-list)}

6.

336% Sometimes you might need to disable some babel features. Currently this macro
understands the following keys, with values on or off:

autoload.bcp47 bidi.math layout.tabular
bcp47.toname linebreak.sea layout.lists
bidi.mirroring linebreak.cjk

bidi.text justify.arabic

The first four are documented elsewhere. The following are by default on, but with off
can disable some features: bidi.math (only preamble) changes for math or amsmath,
linebreak.sea, linebreak.cjk and justify.arabic the corresponding algorithms,
layout.tabular and layout.lists changes for tabular and lists. Some of them are
reverted only to some extent.

Other keys are:

autoload.options prehyphenation.disable select.encoding
autoload.bcpd7.prefix interchar.disable
autoload.bcp47.options select.write

Most of them are documented elsewhere. With select.encoding=off, the encoding is
not set when loading a language on the fly with pdftex (only off).
prehyphenation.disable is by default nohyphenation, which means luatex
prehyphenation transforms are not applied if the current hyphenation rules are
nohyphenation; with off they are never disabled. interchar.disable takes the same
values, but for the xetex interchar mechanism.

For example, you can set \babeladjust{bidi.text=0ff} if you are using an alternative
algorithm or with large sections not requiring it. Use with care, because these options do
not deactivate other related options (like paragraph direction with bidi. text).

Relation with other packages

6.1. Compatibility

There are compatibility issues with the following packages.

61

https://latex3.github.io/babel/news/whats-new-in-babel-3.39.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.36.html

polyglossia This package is not compatible at all with babel. They should never
be used together, because macros are different, and even those with
the same name don’t behave in the same way. Also, languages are
organized quite differently (babel treats all locales on an equal foot-

ing).

tikz/pgf There are some issues with shorthands, which are usually solved
with \usetikzlibrary{babel}.

cleveref Because of a long standing bug in this package, some languages can
raise an error (particularly spanish and greek).

natbib Load it before babel.

bidi Babel relies on BIDI with xetex and bidi=bidi, which has a multitude

of incompatibilities. Please, refer to its manual, and remember for
short and simple texts you can rely on bidi=default instead.

6.2. Related packages

The following packages can be useful in multilingual contexts (the list is far from
exhaustive):

babelbib Multilingual bibliographies.

biblatex Programmable bibliographies and citations.

bicaption Bilingual captions.

csquotes Logical markup for quotes.

hyphsubst Selects a different set of patterns for a language.

iflang Tests correctly the current language.

microtype Adjusts the typesetting according to some languages (kerning and spacing).
Ligatures can be disabled. Search in its manual for babel and
DeclareMicrotypeBabelHook.

mkpattern Generates hyphenation patterns.

siunitx Typesetting of numbers and physical quantities.

substitutefont Combines fonts in several encodings.

tracklang Tracks which languages have been requested.

translator An open platform for packages that need to be localized.

ucharclasses (xetex) Switches fonts when you switch from one Unicode block to another.
Note it doesn’t work with RTL scripts.

zhspacing Spacing for CJK documents in xetex.

6.3. Indexing

For multilingual indexing, see upmendex and xindex, currently preferred to xindy.

7. Tentative and experimental code

See the code section for \foreignlanguage* (a new starred version of \foreignlanguage).
For old and deprecated functions, see the babel site.

Options for locales loaded on the fly

351% \babeladjust{ autoload.options = ... } setsthe options when a language is
loaded on the fly. 2414% By default, it is import, which defines captions, date, numerals,
etc., but ignores the code in the tex file (for example, extended numerals in Greek). It can
be set to empty.

Labels
348% There is some work in progress for babel to deal with labels, both with the relation
to captions (chapters, part), and how counters are used to define them. It is still somewhat
tentative because it is far from trivial — see the babel site for further details.

62

https://latex3.github.io/babel/news/whats-new-in-babel-3.51.html
https://latex3.github.io/babel/news/whats-new-in-babel-24.14.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.48.html

8. Loading language hyphenation rules with language.dat

TeX and most engines based on it (pdfTEX, xetex, e-TgX, the main exception being luatex)
require hyphenation patterns to be preloaded when a format is created (e.g., ETpX, XeEIgX,
pdfETEX). babel provides a tool which has become standard in many distributions and
based on a “configuration file” named language.dat. The exact way this file is used
depends on the distribution, so please, read the documentation for the latter (note also
some distributions generate the file with some tool).

39q With luatex, however, patterns are loaded on the fly when requested by the
language (except the “Oth” language, typically english, which is preloaded always). You
may want to have a local language.dat for a particular project (for example, a book on
Chemistry). The loader for lua(e)tex is slightly different as it’s not based on babel, but on
etex.src; however, babel reloads the data so that it works as expected.

8.1. Format

In that file the person who maintains a TgX environment has to record for which languages
he has hyphenation patterns and in which files these are stored (this was because different
operating systems sometimes used very different file-naming conventions, but this issue is
not currently so serious as before). When hyphenation exceptions are stored in a separate
file this can be indicated by naming that file after the file with the hyphenation patterns.

The file can contain empty lines and comments, as well as lines which start with an
equals (=) sign. Such a line will instruct ETgX that the hyphenation patterns just processed
have to be known under an alternative name. Here is an example:

% File : language.dat

% Purpose : tell iniTeX what files with patterns to load.
english english.hyphenations

=british

dutch hyphen.dutch exceptions.dutch % Nederlands
german hyphen.ger

You may also set the font encoding that the patterns are intended for by following the
language name by a colon and the encoding code. For example:

german:T1l hyphenTl.ger
german hyphen.ger

With the previous settings, if the encoding when the language is selected is T1 then the
patterns in hyphenT1.ger are used, but otherwise use those in hyphen.ger (note the
encoding can be set in \extras(language)).

9. The interface between the core of babel and the language
definition files

The language definition files (1df) must conform to a number of conventions, because these
files have to fill in the gaps left by the common code in babel.def, i.e,, the definitions of
the macros that produce texts. Also the language-switching possibility which has been built
into the babel system has its implications.

The following assumptions are made:

+ Some of the language-specific definitions might be used by plain TgX users, so the files
have to be coded so that they can be read by both KIEX and plain TgX. The current
format can be checked by looking at the value of the macro \ fmtname.

63

* The common part of the babel system redefines a number of macros and environments
(defined previously in the document style) to put in the names of macros that replace
the previously hard-wired texts. These macros have to be defined in the language
definition files.

» The language definition files must define five macros, used to activate and deactivate
the language-specific definitions. These macros are \{language)hyphenmins,
\captions(language), \date({language), \extras({language) and
\noext ras{language)(the last two may be left empty); where {language) is either the
name of the language definition file or the name of the KTgX option that is to be used.
These macros and their functions are discussed below. You must define all or none for a
language; defining, say, \date(language) but not \ captions({language) does not raise an
error but can lead to unexpected results.

« When a language definition file is loaded, it can define \1@language) to be a dialect of
\language® when \1@(language) is undefined.

* Language names must be all lowercase. If an unknown language is selected, babel will
attempt setting it after lowercasing its name.

* The semantics of modifiers is not defined (on purpose). In most cases, they will just be
simple separated options (e.g., spanish), but a language might require, say, a set of
options organized as a tree with suboptions (in such a case, the recommended
separator is /). How modifiers (saved in \BabelModifiers) are handled are left to
language styles; they can use \in@, loop them with \@for or load keyval, for example.

Some recommendations:

 The preferred shorthand is ", which is not used in KTgX (quotes are entered as *~ and
' '). Other good choices are characters which are not used in a certain context (e.g., = in
an ancient language). Note however =, <, >, : and the like can be dangerous, because
they may be used as part of the syntax of some elements (numeric expressions,
key/value pairs, etc.).

Captions should not contain shorthands or encoding-dependent commands (the latter is
not always possible, but should be clearly documented). They should be defined using
the LICR. You may also use the new tools for encoded strings, described below.

Avoid adding things to \noextras{language) except for umlauthigh and friends,
\bbl@deactivate, \bbl@(non) frenchspacing, and language-specific macros. Use
always, wherever possible, \babel@save and \babel@savevariable (except if you still
want to have access to the previous value). Do not reset a macro or a setting to a
hardcoded value. Never. Instead save its value in \ext ras{language).

* Do not switch scripts. If you want to make sure a set of glyphs is used, switch either the
font encoding (low-level) or the language (high-level, which in turn may switch the font
encoding). Usage of things like \latintext is deprecated (but not removed, for
backward compatibility).

* Please, for “private” internal macros do not use the \bbl@ prefix. It is used by babel and
it can lead to incompatibilities.

There are no special requirements for documenting your language files. Just provide a
standalone document suited to your needs, as well as other files you think can be useful. A
PDF and a “readme” are strongly recommended.

9.1. Guidelines for contributed languages

Currently, the easiest way to contribute a new language is by taking one of the 500 or so ini
templates available on GitHub as a basis. Just make a pull request or download it, and then,
after filling out the fields, sent it to me. Feel free to ask for help or to make feature requests.

64

As to 1df files, now language files are “outsourced” and are located in a separate
directory (/macros/latex/contrib/babel-contrib), so that they are contributed directly
to CTAN (please, do not send to me language styles just to upload them to CTAN).

Of course, placing your style files in this directory is not mandatory, but if you want to do
it, here are a few guidelines.

* Do not hesitate stating on the file heads you are the author and the maintainer, if you
actually are. There is no need to state the babel maintainer(s) as author(s) if they have
not contributed significantly to your language files.

 Fonts are not strictly part of a language, so they are best placed in the corresponding
TeX tree. This includes not only tfm, vf, psl, otf, mf files and the like, but also fd ones.

» Font and input encodings are usually best placed in the corresponding tree, too, but
sometimes they belong more naturally to the babel style. Note you may also need to
define a LICR (TLC3, I, 757f.).

» Babel 1df files may just interface a framework, as it happens often with Oriental
languages/scripts. This framework is best placed in its own directory.

The following page provides a starting point for 1df files:
http://www.texnia.com/incubator.html. See also
https://latex3.github.io/babel/guides/list-of-locale-templates.html.

If you need further assistance and technical advice in the development of language
styles, I will be happy to help you. And of course, you can make any suggestion you like.

9.2. Basic macros

In the core of the babel system, several macros are defined for use in language definition
files. Their purpose is to make a new language known. The first two are related to
hyphenation patterns.

\addlanguage The macro \addlanguage is a non-outer version of the macro
\newlanguage, defined in plain.tex version 3.x. Here “language” is used in the TgX sense
of set of hyphenation patterns.

\adddialect The macro \adddialect can be used when two languages can (or must) use
the same hyphenation patterns. This can also be useful for languages for which no patterns
are preloaded in the format. In such cases the default behavior of the babel system is to
define this language as a ‘dialect’ of the language for which the patterns were loaded as
\language0. Here “language” is used in the TgX sense of set of hyphenation patterns, while
“dialect”, which is misnomer, refers just to a language with the same hyphenation patterns
as another (there is no relation with its linguistic meaning).

\<lang>hyphenmins The macro \(language)hyphenmins is used to store the values of the
\lefthyphenmin and \righthyphenmin. Redefine this macro to set your own values, with
two numbers corresponding to these two parameters. For example:

\renewcommand\spanishhyphenmins{34}

(Assigning \lefthyphenmin and \righthyphenmin directly in \extras{language) has no
effect.) This is a low-level setting. In documents you should rely on \babelhyphenmins.

\providehyphenmins The macro \providehyphenmins should be used in the language
definition files to set \lefthyphenmin and \righthyphenmin. This macro will check
whether these parameters were provided by the hyphenation file before it takes any
action. If these values have been already set, this command is ignored (currently, default
pattern files do not set them).

\captions(language) The macro \captions{language) defines the macros that hold the
texts to replace the original hard-wired texts.

\date(language) The macro \date(language) defines \today.

\extras({language) The macro \extras{language) contains all the extra definitions
needed for a specific language. This macro, like the following, is a hook - you can add
things to it, but it must not be used directly.

65

\noextras(language) Because we want to let the user switch between languages, but we
do not know what state TgX might be in after the execution of \extras{language), a macro
that brings TgX into a predefined state is needed. It will be no surprise that the name of this
macro is \noextras(language).

\bbl@declare@ttribute This is a command to be used in the language definition files
for declaring a language attribute. It takes three arguments: the name of the language, the
attribute to be defined, and the code to be executed when the attribute is to be used.

\main@language To postpone the activation of the definitions needed for a language until
the beginning of a document, all language definition files should use \main@language
instead of \selectlanguage. This will just store the name of the language, and the proper
language will be activated at the start of the document.

\ProvidesLanguage The macro \ProvidesLanguage should be used to identify the
language definition files. Its syntax is similar to the syntax of the EITgX command
\ProvidesPackage.

\LdfInit The macro \LdfInit performs a couple of standard checks that must be made
at the beginning of a language definition file, such as checking the category code of the
@-sign, preventing the 1df file from being processed twice, etc.

\ldf@quit The macro \ldf@quit does work needed if an ldf file was processed earlier.
This includes resetting the category code of the @-sign, preparing the language to be
activated at \begin{document} time, and ending the input stream.

\ldf@finish The macro \ldf@finish does work needed at the end of each 1df file. This
includes resetting the category code of the @-sign, loading a local configuration file, and
preparing the language to be activated at \begin{document} time.

\loadlocalcfg After processing a language definition file, KIgX can be instructed to load
a local configuration file. This file can, for instance, be used to add strings to
\captions({language) to support local document classes. The user will be informed that
this configuration file has been loaded. This macro is called by \ldf@finish.

9.3. Skeleton

Here is the basic structure of an 1df file, with a language, a dialect and an attribute. Strings
are best defined using the method explained in sec. 9.8 (babel 3.9 and later).

\ProvidesLanguage{<language>}
[2016/04/23 v0.0 <Language> support from the babel system]
\LdfInit{<language>}{captions<language>}

\ifx\undefined\l@<language>
\@nopatterns{<Language>}
\adddialect\l@<language>0

\fi

\adddialect\1l@<dialect>\1l@<language>

\bbl@declare@ttribute{<language>}{<attrib>}{%
\expandafter\addto\expandafter\extras<language>
\expandafter{\extras<attrib><language>}%
\let\captions<language>\captions<attrib><language>}

\providehyphenmins{<language>}{\tw@\threa@}
\StartBabelCommands*{<language>}{captions}
\SetString\chaptername{<chapter name>}

% More strings
\StartBabelCommands*{<language>}{date}

\SetString\monthiname{<name of first month>}
% More strings

66

\StartBabelCommands*{<dialect>}{captions}
\SetString\chaptername{<chapter name>}
% More strings

\StartBabelCommands*{<dialect>}{date}
\SetString\monthiname{<name of first month>}
% More strings

\EndBabelCommands

\addto\extras<language>{}
\addto\noextras<language>{}
\let\extras<dialect>\extras<language>
\let\noextras<dialect>\noextras<language>

\ldf@finish{<language>}

NOTE If for some reason you want to load a package in your style, you should be aware it
cannot be done directly in the 1df file, but it can be delayed with \AtEndOfPackage.
Macros from external packages can be used inside definitions in the Idf itself (for
example, \extras({language)), but if executed directly, the code must be placed inside
\AtEndOfPackage. A trivial example illustrating these points is:

\AtEndOfPackage{%
\RequirePackage{dingbat}% Delay package
\savebox{\myeye}{\eye}}% And direct usage
\newsavebox{\myeye}

\newcommand\myanchor{\anchor}% But OK inside command

9.4. Support for active characters

In quite a number of language definition files, active characters are introduced. To
facilitate this, some support macros are provided.

\initiate@active@char Used in language definition files to instruct KIgX to give a
character the category code ‘active’. When a character has been made active it will remain
that way until the end of the document. Its definition may vary.

\bbl@activate \bbl@deactivate Used to change the way an active character expands.
\bbl@activate ‘switches on’ the active behavior of the character. \bbl@deactivate lets
the active character expand to its former (mostly) non-active self.

\declare@shorthand Used to define the various shorthands. It takes three arguments:
the name for the collection of shorthands this definition belongs to; the character
(sequence) that makes up the shorthand, i.e., ~ or "a; and the code to be executed when the
shorthand is encountered. (It does not raise an error if the shorthand character has not
been “initiated”.)

\bbl@add@special The TgXbook states: “Plain TgX includes a macro called \dospecials
that is essentially a set macro, representing the set of all characters that have a special
category code.” [4, p. 380] It is used to set text ‘verbatim’. To make this work if more
characters get a special category code, you have to add this character to the macro
\dospecials. KIgX adds another macro called \@sanitize representing the same
character set, but without the curly braces. The macros \bbl@add@special{char) add the
character (char) to these two sets.

\@safe@activestrue \@safe@activesfalse Enables and disables the “safe” mode. It is a
tool for package and class authors. See the description below.

9.5. Support for saving macro definitions

Language definition files may want to redefine macros that already exist. Therefore a
mechanism for saving (and restoring) the original definition of those macros is provided.

67

We provide two macros for this.’

\babel@save To save the current meaning of any control sequence, the macro
\babel@save is provided. It takes one argument, (csname), the control sequence for which
the meaning has to be saved.

\babel@savevariable A second macro is provided to save the current value of a
variable. In this context, anything that is allowed after the \the primitive is considered to
be a variable. The macro takes one argument, the (variable).

The effect of the preceding macros is to append a piece of code to the current definition
of \originalTeX. When \originalTeX is expanded, this code restores the previous
definition of the control sequence or the previous value of the variable.

9.6. Support for extending macros

\addto The macro \addto{(control sequence)}{(TgX code)} can be used to extend the
definition of a macro. The macro need not be defined (i.e., it can be undefined or \ relax).
This macro can, for instance, be used in adding instructions to a macro like
\extrasenglish.

Be careful when using this macro, because depending on the case the assignment can be
either global (usually) or local (sometimes). That does not seem very consistent, but this
behavior is preserved for backward compatibility. If you are using etoolbox, by Philipp
Lehman, consider using the tools provided by this package instead of \addto.

9.7. Macros common to a number of languages

\bbl@allowhyphens In several languages compound words are used. This means that
when TgX has to hyphenate such a compound word, it only does so at the -’ that is used in
such words. To allow hyphenation in the rest of such a compound word, the macro
\bbl@allowhyphens can be used.

\allowhyphens Same as \bbl@allowhyphens, but does nothing if the encoding is T1. It is
intended mainly for characters provided as real glyphs by this encoding but constructed
with \accent in OT1.

Note the previous command (\bbl@allowhyphens) has different applications (hyphens
and discretionaries) than this one (composite chars). Note also prior to version 3.7,
\allowhyphens had the behavior of \bbl@allowhyphens.

\set@low@box For some languages, quotes need to be lowered to the baseline. For this
purpose the macro \set@low@box is available. It takes one argument and puts that
argument in an \hbox, at the baseline. The result is available in \box0 for further
processing.

\save@sf@q Sometimes it is necessary to preserve the \spacefactor. For this purpose
the macro \save@sf@q is available. It takes one argument, saves the current spacefactor,
executes the argument, and restores the spacefactor.

\bbl@frenchspacing \bbl@nonfrenchspacing Those commands can be used to properly
switch French spacing on and off.

NOTE With 1df files, babel does not take into account \normalsfcodes and (non-)French
spacing is not always properly (un)set by languages However, problems are unlikely to
happen and therefore this part remains untouched. With ini files, this issue has been
addressed.

9.8. Encoding-dependent strings

39a Babel 3.9 provides a way of defining strings in several encodings, intended mainly
for luatex and xetex, although the old way of defining/switching strings still works and it’s
used by default.
It consists in a series of blocks started with \StartBabelCommands. The last block is
closed with \EndBabelCommands. Each block is a single group (i.e., local declarations apply

9This mechanism was introduced by Bernd Raichle.

68

until the next \StartBabelCommands or \EndBabelCommands). An 1df may contain several
series of this kind.

Thanks to this new feature, string values and string language switching are not mixed
any more. Furthermore, strings do not need to be wrapped with formatting commands
(e.g., to select the writing direction) because babel takes care of it automatically. (See also
\setlocalecaption.)

\StartBabelCommands{(language-list)}{(category)}[(selector)]

The (language-list) specifies which languages the block is intended for. A block is taken
into account only if the \CurrentOption is listed here. Alternatively, you can define
\BabellLanguages to a comma-separated list of languages to be defined (if undefined,
\StartBabelCommands sets it to \CurrentOption). You may write \CurrentOption as the
language, but this is discouraged - an explicit name (or names) is much better and clearer.

A “selector” selects a group of definition that are to be used, optionally followed by extra
info about the encodings to be used. The name unicode must be used for luatex and xetex.
Without a selector, the LICR representation (i.e., with macros like \~{n} instead of fi) is
assumed.

If a string is set several times (because several blocks are read), the first one takes
precedence (i.e., it works much like \providecommand).

Encoding info is charset= followed by a charset, which, if given, sets how the strings
should be translated to the internal representation used by the engine, typically utf8,
which is the only value supported currently (default is no translations). Note charset is
applied by luatex and xetex when reading the file, not when the macro or string is used in
the document.

Alist of font encodings which the strings are expected to work with can be given after
fontenc= (separated with spaces, if two or more) — recommended, but not mandatory,
although blocks without this key are not taken into account if you have requested
strings=encoded.

Blocks without a selector are read always. They provide fallback values, and therefore
they must be the last ones; they should be provided always if possible and all strings
should be defined somehow inside it; they can be the only blocks (mainly LGC scripts using
the LICR).

The (category) is either captions, date or extras. You must stick to these three
categories, even if no error is raised when using other names.'® It may be empty, too, but in
such a case using \SetString is an error.

\StartBabelCommands{language}{captions}
[unicode, fontenc=TU EUl EU2, charset=utf8]
\SetString{\chaptername}{utf8-string}

\StartBabelCommands{language}{captions}
\SetString{\chaptername}{ascii-maybe-LICR-string}

\EndBabelCommands
A real example can be:

\StartBabelCommands{austrian}{date}
[unicode, fontenc=TU, charset=utf8]
\SetString\monthiname{Janner}

\StartBabelCommands{german,austrian}{date}
[unicode, fontenc=TU, charset=utf8]

\SetString\monthiiiname{Marz}

\StartBabelCommands{austrian}{date}

101n future releases further categories may be added.

69

\SetString\monthiname{J\"{a}nner}

\StartBabelCommands{german}{date}
\SetString\monthiname{Januar}

\StartBabelCommands{german,austrian}{date}
\SetString\monthiiname{Februar}
\SetString\monthiiiname{M\"{a}rz}
\SetString\monthivname{April}
\SetString\monthvname{Mai}
\SetString\monthviname{Juni}
\SetString\monthviiname{Juli}
\SetString\monthviiiname{August}
\SetString\monthixname{September}
\SetString\monthxname{Oktober}
\SetString\monthxiname{November}
\SetString\monthxiiname{Dezenber}
\SetString\today{\number\day.~%

\csname month\romannumeral\month name\endcsname\space
\number\year}

\StartBabelCommands{german,austrian}{captions}
\SetString\prefacename{Vorwort}
[etc.]

\EndBabelCommands

When used in 1df files, previous values of \{category){language) are overridden, which
means the old way to define strings still works and used by default (to be precise, is first set
to undefined and then strings are added). However, when used in the preamble or in a
package, new settings are added to the previous ones, if the language exists (in the babel
sense, i.e., if \date(language) exists).

NOTE The package option strings introduced in version 3.9 (around 2013) when Unicode
engines were still of marginal use, is now deprecated.

NOTE Captions and other strings defined in ini files (in other words, when a locale is
loaded with \babelprovide) are internally set with the help of these macros.

\StartBabelCommands * {(language- list)}{(category)}[(selector)]

The starred version just forces strings to take a value — if not set as package option
(which is now deprecated), then the default for the engine is used. This is not done by
default to prevent backward incompatibilities, but if you are creating a new language this
version is better. It’s up to the maintainers of the current languages to decide if using it is
appropriate.

\EndBabelCommands
Marks the end of the series of blocks.

\AfterBabelCommands{{code)}

The code is delayed and executed at the global scope just after \EndBabelCommands.

\SetString{(macro-name)}{(string)}

Adds (macro-name) to the current category, and defines globally (lang-macro-name) to
(code) (after applying the transformation corresponding to the current charset or defined
with the hook stringprocess).

Use this command to define strings, without including any “logic” if possible, which
should be a separate macro. See the example above for the date.

70

\SetStringLoop{{macro-name)}{(string-list)}

A convenient way to define several ordered names at once. For example, to define
\abmoniname, \abmoniiname, etc. (and similarly with abday):

\SetStringLoop{abmon#lname}{en, fb,mr,ab,my,jn,jl,ag,sp,oc,nv,dc}
\SetStringLoop{abday#lname}{lu,ma,mi, ju,vi,sa,do}

#1 is replaced by the roman numeral.

\SetHyphenMap{(to- lower-macros)}

39¢ Case mapping for hyphenation is handled with \SetHyphenMap and controlled with
the package option hyphenmap.
There are three helper macros to be used inside \SetHyphenMap:

* \BabelLower{{uccode)}{(lccode)} is similar to \lccode but it’s ignored if the char has
been set and saves the original lccode to restore it when switching the language (except
with hyphenmap=first).

* \BabelLowerMM{(uccode-from)}{(uccode-to)}{(step)}{(lccode-from)} loops though the
given uppercase codes, using the step, and assigns them the lccode, which is also
increased (MM stands for many-to-many).

* \BabelLowerMO{(uccode-from)}{(uccode-to)}{(step) }{{lccode)} loops though the given
uppercase codes, using the step, and assigns them the lccode, which is fixed (MO stands
for many-to-one).

An example is (which is redundant, because these assignments are done by both luatex and

xetex):

\SetHyphenMap{\BabelLowerMM{"100}{"11F}{2}{"101}}

NOTE This macro is not intended to fix wrong mappings done by Unicode (which are the
default in both luatex and xetex) — if an assignment is wrong, fix it directly.

10. Acknowledgements

In the initial stages of the development of babel, Bernd Raichle provided many helpful
suggestions and Michel Goossens supplied contributions for many languages. Ideas from
Nico Poppelier, Piet van Oostrum and many others have been used. Paul Wackers and
Werenfried Spit helped find and repair bugs.

More recently, there are significant contributions by Salim Bou, Ulrike Fischer, Loren
Davis and Udi Fogiel.

Barbara Beeton has helped in improving the manual.

There are also many contributors for specific languages, which are mentioned in the
respective files. Without them, babel just wouldn’t exist.

References

[1] Huda Smitshuijzen Abifares, Arabic Typography, Saqi, 2001.

[2] Johannes Braams, Victor Eijkhout and Nico Poppelier, The development of national ETgX
styles, TUGboat 10 (1989) #3, pp. 401-406.

[3] Yannis Haralambous, Fonts & Encodings, O’Reilly, 2007.

[4] Donald E. Knuth, The TgXbook, Addison-Wesley, 1986.

71

[5] Jukka K. Korpela, Unicode Explained, O’Reilly, 2006.

[6] Leslie Lamport, BTgX, A document preparation System, Addison-Wesley, 1986.
[7] Leslie Lamport, in: TgXhax Digest, Volume 89, #13, 17 February 1989.

[8] Ken Lunde, CJKV Information Processing, O’Reilly, 2nd ed., 2009.

[9] Edward M. Reingold and Nachum Dershowitz, Calendrical Calculations: The Ultimate
Edition, Cambridge University Press, 2018

[10] Hubert Partl, German TgX, TUGboat 9 (1988) #1, pp. 70-72.
[11] Joachim Schrod, International ETgX is ready to use, TUGboat 11 (1990) #1, pp. 87-90.

[12] Apostolos Syropoulos, Antonis Tsolomitis and Nick Sofroniu, Digital typography using
ETEX, Springer, 2002, pp. 301-373.

[13] K.E. Treebus. Tekstwijzer, een gids voor het grafisch verwerken van tekst, SDU Uitgeverij
(’s-Gravenhage, 1988).

72

	Contents
	1 The basic user interface
	1.1 Monolingual documents: the ‘classical’ way
	1.2 Monolingual documents: the ‘modern’ way
	1.3 Mostly monolingual documents: lazy loading
	1.4 Multilingual documents: the ‘classical’ way
	1.5 Multilingual documents: the ‘modern’ way
	1.6 Languages supported by babel in the ‘classical’ mode
	1.7 Languages supported by babel in the ‘modern’ mode
	1.8 Fonts in Unicode engines
	1.9 Basic language selectors
	1.10 Auxiliary language selectors
	1.11 Plain

	2 More on language loading and selection
	2.1 A few tools
	2.2 Accessing language info
	2.3 Package options
	2.4 The base option
	2.5 provide and \babelprovide – ini files
	2.6 Selection based on BCP 47 tags

	3 Tailoring, customizing and modifying a language
	3.1 Captions
	3.2 Modifiers
	3.3 Language attributes
	3.4 Casing
	3.5 Modifying and adding values to ini files
	3.6 Hooks
	3.7 Manage auxiliary files
	3.8 Code based on the selector
	3.9 Presets

	4 Creating a language
	5 Locale features
	5.1 Hyphenation and line breaking – 1. Commands
	5.2 Hyphenation and line breaking – 2. ‘Provide’ options
	5.3 Shorthands – 1. Commands
	5.4 Shorthands – 2. Package options
	5.5 Digits and counters
	5.6 Dates
	5.7 Transforms
	5.8 Support for xetex interchar
	5.9 Scripts
	5.10 Bidirectional and right-to-left text
	5.11 Unicode character properties in luatex
	5.12 Tweaking some babel features

	6 Relation with other packages
	6.1 Compatibility
	6.2 Related packages
	6.3 Indexing

	7 Tentative and experimental code
	8 Loading language hyphenation rules with language.dat
	8.1 Format

	9 The interface between the core of babel and the language definition files
	9.1 Guidelines for contributed languages
	9.2 Basic macros
	9.3 Skeleton
	9.4 Support for active characters
	9.5 Support for saving macro definitions
	9.6 Support for extending macros
	9.7 Macros common to a number of languages
	9.8 Encoding-dependent strings

	10 Acknowledgements
	References

